K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Vì H và D đối xứng nhau qua AB

nên AH=AD; BH=BD

Xét ΔAHB và ΔADB có

AH=AD

HB=DB

AB chung

Do đó ΔAHB=ΔADB

Suy ra: góc ADB=90 độ và góc HAB=góc DAB

hay BD vuông góc với AD và AB là phân giác của góc HAD(1)

b: Ta có: H và E đối xứng nhau qua AC
nên AH=AE; CH=CE

=>ΔAHC=ΔAEC

=>góc AEC=90 độ và góc HAC=góc EAC

=>AC là phân giác của góc HAE(2)

Ta có: CH+BH=BC

=>BD+CE=BC

c: Từ (1) và (2) suy ra góc DAE=2x90=180 độ

=>D,A,E thẳng hàng

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

3 tháng 12 2018

1a/IM vuông góc AB=>AMI=90 do

IN vuông góc AC=>ANI=90 do

△ABC vuông tại A=>BAC=90 do

=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật

1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)

Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)

Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi

3 tháng 12 2018

2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H

=> AM=MB VA EM=MH hay AB giao voi EH tai TD M

=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn

2b/Co AEBH la hcn=>EH=AB

+) Mà AB=AC=>EH=AC(1)

+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.

Co goc BAH=1/2 EAH ; góc AHE=1/2AHB

Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.

Mà 2 góc này ở vị trí SLT=> EH//AC(2)

Từ (1) va (2)=>tg AEHC la hbh

16 tháng 11 2021

a: Xét tứ giác AIMK có 

\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)

Do đó: AIMK là hình chữ nhật

16 tháng 11 2021

a: Xét tứ giác AIMK có 

\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)

Do đó: AIMK là hình chữ nhật

16 tháng 11 2021

a: Xét tứ giác AIMK có 

\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)

Do đó: AIMK là hình chữ nhật

20 tháng 12 2016

Câu c có sai k v bạn??

20 tháng 12 2016

a) Xét tứ giác ABCD có:

. M là trung điểm của BC ( AM là đường trung tuyến)

. M là tđ của AD ( gt)

Vậy: ABCD là hbh ( tứ giác có 2 đường chéo cắt nhau tại tđ của mỗi đường)

\(\widehat{BAC}\) = 900 ( \(\Delta\) ABC vuông tại A)

--> ABCD là hình chữ nhật ( hbh có 1 góc vuông)

b) Ta có: \(IA\perp AC\)

\(CD\perp AC\)

\(\Rightarrow\) IA // CD

Xét tứ giác BIDC có:

. IA // CD (cmt)

\(\Rightarrow\) IB // CD ( B ϵ IA )

. AB =CD ( cạnh đối hcn ABCD )

mà AB = IB ( tính chất đối xứng)

\(\Rightarrow\) IB = CD ( cùng = AB )

Vậy: BIDC là hbh ( tứ giác có 2 cạnh đối vừa //, vừa = nhau)

\(\Rightarrow\) BC // ID ( cạnh đối hbh)

" đề câu c sai nha bạn"