Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nha!
a, ta có:
Góc A=Góc D=90°(gt)<=>AD_|_DC
BH_|_DC
=>BH//AD
ABCD là hình thang nên AB//CD
=>Tứ giác ABHD là hình chữ nhật.
b,Do ABHD là hình chữ nhật, nên:
AB=HD=3cm
CD=6cm=>HC=6-3=3 cm
Do BH_|_CD(gt)=>góc BHC=90°
=>tam giác BHC vuông tại H
Xét tam giác vuông BHC:
Theo định lý pitago trong tam giác vuông thì:
BC^2=HC^2+BH^2
=>BH^2=BC^2-HC^2=(5)^2-(3)^2=16
=>BH=4 cm
=>Diện tích hình chữ nhật ABHD là:
3.4=12 cm2
c,Do M là M là trung điểm của BC nên:
MB=MC=BC/2=5/2=2,5cm
Do N đối xứng với M qua E (gt)nên:
EM=EN
Đường chéo AH^2=AD^2+DH^2=25cm
=>AH=5cm=>EH=5/2=2,5cm
=>Tứ giác ABCHH=NMCD vì MC=ND=BC/2=2,5 cm
EM+EN=2AB=6 cm
AB//HC=3cm;BC//AH=5cm
=>NM//DC=6cm
==> Tứ giác NMCD là hình bình hành
d,bạn tự chứng minh (khoai quá)
a: Xét tứ giác AEDC có
AE//DC
AE=DC
Do đó: AEDC là hình bình hành
Suy ra: AC//DE và AC=DE
Xét tứ giác ACFD có
AD//CF
AD=CF
Do đó: ACFD là hình bình hành
Suy rA: AC//FD và AC=FD
Ta có: AC//ED
AC//FD
mà FD,ED có điểm chung là D
nên F,D,E thẳng hàng
mà DE=DF
nên D là trung điểm của EF
hay E và F đối xứng với nhau qua D
b: Xét tứ giác BPHQ có
\(\widehat{BQH}=\widehat{BPH}=\widehat{PBQ}=90^0\)
Do đó:BPHQ là hình chữ nhật
a: Ta có M và D đối xứng nhau qua AB
nên AM=AD
=>ΔAMD cân tại A
mà AB là đường cao
nên AB là phân giác
b: Ta có: M và E đối xứng nhau qua AC
nên AM=AE
=>AE=AD
a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH
=> AH=AD (1)
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE
=> AH=AE (2)
Từ (1) và (2) suy ra AD=AE (3)
Mặt khác góc DAB=gócBAH; gócHAC= góc CAE và góc BAH+góc HAC=90o
do đó góc DAB+góc BAH+góc HAC+góc CAE=180o
=> D, A, E thẳng hàng (4)
từ (3) và (4) suy ra D và E đx với nhau qua A.
b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE
=> tam giác DHE vuông tại H.
c) Tam giác ADB=tam giác AHB (c-c-c)
suy ra góc ADB=góc AHB=90o
tương tự ta có : góc AEC=90o
suy ra BD//CE (cùng vuông góc với DE)
nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE
=> BAEC là hình thang vuông.
a) Vì D là điểm đối xứng với H qua AB nên AB là đường trung trực của DH
=> AH=AD (1)
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE
=> AH=AE (2)
Từ (1) và (2) suy ra AD=AE (3)
Mặt khác góc DAB= góc BAH; góc HAC=góc CAE và góc BAH+góc HAC=90o
Do đó góc DAB + góc BAH+ góc HAC + góc CAE=180o
=> D, A, E thẳng hàng (4)
Từ (3) và (4) suy ra D và E đx với nhau qua A.
b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE
=> tam giác DHE vuông tại H.
c) Tam giác ADB=tam giác AHB (c-c-c)
suy ra góc ADB=góc AHB=90o
tương tự ta có góc AEC=90o
=> BD//CE (cùng vuông góc với DE)
nên tứ giác BDEC là hình thang có 2 góc vuông kề cạnh bên DE
=> BDEC là hình thang vuông.
a: Vì H và D đối xứng nhau qua AB
nên AH=AD; BH=BD
Xét ΔAHB và ΔADB có
AH=AD
HB=DB
AB chung
Do đó ΔAHB=ΔADB
Suy ra: góc ADB=90 độ và góc HAB=góc DAB
hay BD vuông góc với AD và AB là phân giác của góc HAD(1)
b: Ta có: H và E đối xứng nhau qua AC
nên AH=AE; CH=CE
=>ΔAHC=ΔAEC
=>góc AEC=90 độ và góc HAC=góc EAC
=>AC là phân giác của góc HAE(2)
Ta có: CH+BH=BC
=>BD+CE=BC
c: Từ (1) và (2) suy ra góc DAE=2x90=180 độ
=>D,A,E thẳng hàng