Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+cot^2a=\dfrac{1}{sin^2a}\)
\(\Leftrightarrow\dfrac{1}{sin^2a}=1+\dfrac{\left(a^2-b^2\right)^2}{4a^2b^2}=\dfrac{4a^2b^2+a^4-2a^2b^2+b^4}{4a^2b^2}\)
\(\Leftrightarrow sin^2a=\dfrac{4a^2b^2}{a^4+2a^2b^2+b^4}=\left(\dfrac{2ab}{\left(a^2+b^2\right)}\right)^2\)
=>\(cos^2a=\dfrac{a^4+2a^2b^2+b^4-4a^2b^2}{\left(a^2+b^2\right)^2}\)
\(\Leftrightarrow cos^2a=\dfrac{\left(a^2-b^2\right)^2}{\left(a^2+b^2\right)^2}\)
hay \(cosa=\dfrac{\left(a^2-b^2\right)}{a^2+b^2}\)
a/ \(A=\frac{cot^2a-cos^2a}{cot^2a}-\frac{sina.cosa}{cota}\)
\(=\frac{\frac{cos^2a}{sin^2a}-cos^2a}{\frac{cos^2a}{sin^2a}}-\frac{sina.cosa}{\frac{cosa}{sina}}\)
\(=\left(1-sin^2a\right)-sin^2a=1\)
b/ \(B=\left(cosa-sina\right)^2+\left(cosa+sina\right)^2+cos^4a-sin^4a-2cos^2a\)
\(=cos^2a-2cosa.sina+sin^2a+cos^2a+2cosa.sina+sin^2a+\left(cos^2a+sin^2a\right)\left(cos^2a-sin^2a\right)-2cos^2a\)
\(=2+\left(cos^2a-sin^2a\right)-2cos^2a\)
\(=2-sin^2a-cos^2a=2-1=1\)
Lời giải:
a) Áp dụng công thức \(\sin ^2a+\cos ^2a=1\) thì:
\(P=3\sin ^2a+4\cos ^2a=3(\sin ^2a+\cos ^2a)+\cos ^2a\)
\(=3.1+(\frac{1}{3})^2=\frac{28}{9}\)
b)
\(\tan a=\frac{3}{4}\Rightarrow \cot a=\frac{1}{\tan a}=\frac{4}{3}\)
\(\frac{3}{4}=\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=\frac{3}{4}\cos a\)
\(\Rightarrow \sin ^2a=\frac{9}{16}\cos ^2a\)
\(\Rightarrow \sin ^2a+\cos ^2a=\frac{25}{16}\cos ^2a\Rightarrow \frac{25}{16}\cos ^2a=1\)
\(\Rightarrow \cos ^2a=\frac{16}{25}\Rightarrow \cos a=\pm \frac{4}{5}\)
Nếu \(\Rightarrow \sin a=\pm \frac{3}{5}\) (theo thứ tự)
c)
\(\frac{1}{2}=\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=\frac{\cos a}{2}\). Vì a góc nhọn nên \(\cos a\neq 0\)
Do đó:
\(\frac{\cos a-\sin a}{\cos a+\sin a}=\frac{\cos a-\frac{\cos a}{2}}{\cos a+\frac{\cos a}{2}}=\frac{\cos a(1-\frac{1}{2})}{\cos a(1+\frac{1}{2})}=\frac{1-\frac{1}{2}}{1+\frac{1}{2}}=\frac{1}{3}\)
a.Ta có \(\tan\alpha.\cot\alpha=1\Rightarrow\tan\alpha=\frac{1}{\cot\alpha}\)
\(\Rightarrow\frac{1}{\cot\alpha}+\cot\alpha=2\Rightarrow\cot^2\alpha-2\cot\alpha+1=0\)
\(\cot\alpha=1\Rightarrow\alpha=45^0\)
b.Ta có \(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\cos^2\alpha=1-\sin^2\alpha\)
\(\Rightarrow7.\sin^2\alpha+5\left(1-\sin^2\alpha\right)=\frac{13}{2}\)\(\Leftrightarrow\sin^2\alpha=\frac{3}{4}\Leftrightarrow\orbr{\begin{cases}sin\alpha=\frac{\sqrt{3}}{2}\\sin\alpha=\frac{-\sqrt{3}}{2}\end{cases}}\)
\(\Rightarrow\alpha=60^0\)
a ) \(\tan\alpha=\dfrac{3}{4}\Rightarrow\alpha=36^052'11,63"\)
b ) \(\sin\alpha=0,5\Rightarrow\alpha=\dfrac{1}{2}\)
c ) \(\cos\alpha=\dfrac{2}{5}\Rightarrow\alpha=66^025'18,56"\)
d ) \(\cot\alpha=3\Rightarrow\alpha=18^026'5,82"\)
\(cot^2a=\left(\dfrac{a^2-b^2}{2ab}\right)^2\Leftrightarrow\dfrac{cos^2a}{sin^2a}=\dfrac{a^4+b^4-2a^2b^2}{4a^2b^2}\)
\(\Leftrightarrow\dfrac{cos^2a}{sin^2a}+1=\dfrac{a^4+b^4-2a^2b^2}{4a^2b^2}+1\)
\(\Leftrightarrow\dfrac{1}{sin^2a}=\dfrac{a^4+b^4+2a^2b^2}{4a^2b^2}\)
\(\Leftrightarrow sin^2a=\dfrac{4a^2b^2}{a^4+b^4+2a^2b^2}\)
\(\Leftrightarrow cos^2a=1-sin^2a=1-\dfrac{4a^2b^2}{a^4+b^4+2a^2b^2}=\dfrac{a^4+b^4-2a^2b^2}{a^4+b^4+2a^2b^2}\)
\(\Leftrightarrow cos^2a=\left(\dfrac{a^2-b^2}{a^2+b^2}\right)^2\)
\(\Leftrightarrow cosa=\dfrac{a^2-b^2}{a^2+b^2}\)
Nhìn sự khác nhau giữa dòng 2 và dòng 3 và tự suy luận đi em, rất đơn giản đúng ko?