Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x^3+y^3+z^3=3xyz\left(gt\right)\)
\(\Rightarrow x^3+y^3+z^3-3xyz=0\)
\(\Rightarrow x^3+y^3+3xy\left(x+y\right)+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\Rightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)
\(\Rightarrow\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x+y+z\right)=0\)
\(\Rightarrow\left(x+y+z\right)^3-\left(x+y+z\right)\left(3xy+3zx+3yz\right)=0\)
\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xy-3xz-3yz\right)=0\)
\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)
\(\Rightarrow\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y+z=0\\\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\end{matrix}\right.\)
Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
Mà \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
\(\Rightarrow x=y=z\)
Xét trường hợp x = y = z, ta có:
\(P=\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(P=\dfrac{x^3}{2x.2x.2x}\)
\(P=\dfrac{x^3}{8x^3}\)
\(P=\dfrac{1}{8}\)
Xét trường hợp x + y + z = 0, ta có:
\(\left\{{}\begin{matrix}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(y+x\right)\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{-\left(x+y\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(\Rightarrow P=-1\)
Ta có: x3 + y3 + z3 = 3xyz
x3 + y3 + z3 - 3xyz = 0
x3 + 3x2y + 3xy2 + y3 + z3 - 3xy(x + y) - 3xyz = 0
(x + y)3 + z2 - 3xy(x + y + z) = 0
(x + y + z)[(x + y)2 - (x + y)z + z2] - 3xy(x + y + z) = 0
(x + y + z)(x2 + 2xy + y2 - xz - yz + z2) - 3xy(x + y + z) = 0
(x + y + z)(x2 + 2xy + y2 - xz - yz + z2 - 3xy) = 0
(x + y + z)(x2 + y2 + z2 - xz - yz - xy) = 0
=> x + y + z = 0 hoặc x2 + y2 + z2 - xz - yz - xy = 0
+) Với x + y + z = 0
<=> x + y = -z, x + z = -y, y + z = -x
Thay x + y = -z, x + z = -y, y + z = -x vào P, ta có:
\(P=\frac{xyz}{\left(-z\right)\left(-x\right)\left(-y\right)}=-1\)
+) Với x2 + y2 + z2 - xz - yz - xy = 0
=> 2x2 + 2y2 + 2z2 - 2xz - 2yz - 2xy = 0
=> (x2 - 2xy + y2) + (x2 - 2xz + z2) + (y2 - 2yz + z2) = 0
=> (x - y)2 + (x - z)2 + (y - z)2 = 0
=> (x - y)2 = 0 và (x - z)2 = 0 và (y - z)2 = 0
=> x = y và x = z và y = z
=> x = y = z
Thay x = y = z vào P, ta có:
\(P=\frac{xxx}{\left(x+x\right)\left(x+x\right)\left(x+x\right)}=\frac{x^3}{\left(2x\right)^3}=\frac{x^3}{8x^3}=\frac{1}{8}\)
\(P=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)\)
\(P=-x^3\left(y^2-z\right)-y^3\left(z^2-x\right)-z^3\left(x^2-y\right)+xyz\left(xyz-1\right)\)
Thay x2 - y = a ; y2 - z = b ; z2 - x = c
\(P=-x^3b-y^3c-z^3a+xyz\left(xyz-1\right)\)
\(P=-x^3b-y^3c-z^3a+x^2y^2z^2-xyz\left(1\right)\)
Ta có:
\(\left\{{}\begin{matrix}x^2-y=a\\y^2-z=b\\z^2-x=c\end{matrix}\right.\left(2\right)\)
\(\Rightarrow abc=\left(x^2-y\right)\left(y^2-z\right)\left(z^2-x\right)\)
\(\Rightarrow abc=x^2y^2z^2-ay^2z^2+abz^2-bz^2x^2+bcx^2-zx^2y^2+cay^2-xyz\)
\(\Rightarrow abc=x^2y^2z^2-az^2\left(y^2-b\right)-bx^2\left(z^2-c\right)-cy^2\left(x^2-a\right)-xyz\)
Thay (2) vào ta được:
\(abc=x^2y^2z^2-az^2.z-bx^2.x-cy^2.y-xyz\)
\(\Rightarrow abc=-az^3-bx^3-cy^3+x^2y^2z^2-xyz\)
Mà \(P=-az^3-bx^3-cy^3+x^2y^2z^2-xyz\) ( Theo 1 )
\(\Rightarrow P=abc\)
Vậy P không phụ thuộc vào biến x
x^3 + y^3 + z^3 = 3xyz
<=> (x + y + z)(x^2 + y^2 + z^2 -xy -yz - zx) = 0
vì x+y+z khác 0 => x^2 + y^2 + z^2 -xy -yz - zx = 0
nhân 2 vế cho 2 => (x - y)^2 + (y - z)^2 + (z -x)^2 = 0
=> x = y = z
thay vào P ta dc: P= xxx/(2x.2x.2x) = x^3/8x^3 = 1/8
a: \(\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(y-z\right)\left(x-z\right)}-\dfrac{x}{\left(x-y\right)\left(x-z\right)}\)
\(=\dfrac{xy-yz-xz+yz-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
=0
c: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(y-z\right)\left(x-y\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)
\(=\dfrac{zy\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{zy^2-z^2y-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{1}{xyz}\)
xem lại đề; x = 1 -> đề sai
Đề bài có lẽ bị sai , nếu thử x = 5 , y = 7 , z = 8