\(C=\left(x+y\right)\left(y+z\right)\left(x+z\right)+xyz\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2016

xem lại đề; x = 1 -> đề sai

5 tháng 11 2016

Đề bài có lẽ bị sai , nếu thử x = 5 , y = 7 , z = 8 

25 tháng 9 2018

Ta có:

\(x^3+y^3+z^3=3xyz\left(gt\right)\)

\(\Rightarrow x^3+y^3+z^3-3xyz=0\)

\(\Rightarrow x^3+y^3+3xy\left(x+y\right)+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Rightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)

\(\Rightarrow\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x+y+z\right)=0\)

\(\Rightarrow\left(x+y+z\right)^3-\left(x+y+z\right)\left(3xy+3zx+3yz\right)=0\)

\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xy-3xz-3yz\right)=0\)

\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)

\(\Rightarrow\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y+z=0\\\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)

\(\Rightarrow x=y=z\)

Xét trường hợp x = y = z, ta có:

\(P=\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(P=\dfrac{x^3}{2x.2x.2x}\)

\(P=\dfrac{x^3}{8x^3}\)

\(P=\dfrac{1}{8}\)

Xét trường hợp x + y + z = 0, ta có:

\(\left\{{}\begin{matrix}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(y+x\right)\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{-\left(x+y\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\Rightarrow P=-1\)

13 tháng 11 2018

Ta có: x+ y3 + z3 = 3xyz

x3 + y3 + z3 - 3xyz = 0

x3 + 3x2y + 3xy2 + y+ z3 - 3xy(x + y) - 3xyz = 0

(x + y)3 + z2 - 3xy(x + y + z) = 0

(x + y + z)[(x + y)2 - (x + y)z + z2] - 3xy(x + y + z) = 0

(x + y + z)(x2 + 2xy + y2 - xz - yz + z2) - 3xy(x + y + z) = 0

(x + y + z)(x2 + 2xy + y2 - xz - yz + z2 - 3xy) = 0

(x + y + z)(x2 + y2 + z2 - xz - yz - xy) = 0

=> x + y + z = 0 hoặc x2 + y2 + z2 - xz - yz - xy = 0

+) Với x + y + z = 0 

<=> x + y = -z, x + z = -y, y + z = -x

Thay x + y = -z, x + z = -y, y + z = -x vào P, ta có:

\(P=\frac{xyz}{\left(-z\right)\left(-x\right)\left(-y\right)}=-1\)

+) Với x2 + y2 + z2 - xz - yz - xy = 0

=> 2x2 + 2y2 + 2z2 - 2xz - 2yz - 2xy = 0

=> (x2 - 2xy + y2) + (x2 - 2xz + z2) + (y2 - 2yz + z2) = 0

=> (x - y)2 + (x - z)2 + (y - z)2 = 0

=> (x - y)2 = 0 và (x - z)2 = 0 và (y - z)2 = 0

=> x = y và x = z và y = z

=> x = y = z

Thay x = y = z vào P, ta có:

\(P=\frac{xxx}{\left(x+x\right)\left(x+x\right)\left(x+x\right)}=\frac{x^3}{\left(2x\right)^3}=\frac{x^3}{8x^3}=\frac{1}{8}\)

17 tháng 9 2018

\(P=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)\)

\(P=-x^3\left(y^2-z\right)-y^3\left(z^2-x\right)-z^3\left(x^2-y\right)+xyz\left(xyz-1\right)\)

Thay x2 - y = a ; y2 - z = b ; z2 - x = c

\(P=-x^3b-y^3c-z^3a+xyz\left(xyz-1\right)\)

\(P=-x^3b-y^3c-z^3a+x^2y^2z^2-xyz\left(1\right)\)

Ta có:

\(\left\{{}\begin{matrix}x^2-y=a\\y^2-z=b\\z^2-x=c\end{matrix}\right.\left(2\right)\)

\(\Rightarrow abc=\left(x^2-y\right)\left(y^2-z\right)\left(z^2-x\right)\)

\(\Rightarrow abc=x^2y^2z^2-ay^2z^2+abz^2-bz^2x^2+bcx^2-zx^2y^2+cay^2-xyz\)

\(\Rightarrow abc=x^2y^2z^2-az^2\left(y^2-b\right)-bx^2\left(z^2-c\right)-cy^2\left(x^2-a\right)-xyz\)

Thay (2) vào ta được:

\(abc=x^2y^2z^2-az^2.z-bx^2.x-cy^2.y-xyz\)

\(\Rightarrow abc=-az^3-bx^3-cy^3+x^2y^2z^2-xyz\)

\(P=-az^3-bx^3-cy^3+x^2y^2z^2-xyz\) ( Theo 1 )

\(\Rightarrow P=abc\)

Vậy P không phụ thuộc vào biến x

27 tháng 7 2017

b, \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left(x-y\right)^2\left(x-y\right)-\left(y-z\right)^2\left[\left(x-y\right)+\left(z-x\right)\right]+\left(z-x\right)^2\left(z-x\right)\)

\(=\left(x-y\right)^2\left(x-y\right)-\left(y-z\right)^2\left(x-y\right)-\left(y-z\right)^2\left(z-x\right)+\left(z-x\right)^2\left(z-x\right)\)

\(=\left(x-y\right)\left[\left(x-y\right)^2-\left(y-z\right)^2\right]-\left(z-x\right)\left[\left(y-z\right)^2-\left(z-x\right)^2\right]\)

\(=\left(x-y\right)\left(x-y-y+z\right)\left(x-y+y-z\right)-\left(z-x\right)\left(y-z-z+x\right)\left(y-z+z-x\right)\)

\(=\left(x-y\right)\left(x-2y+z\right)\left(x-z\right)-\left(z-x\right)\left(y-2z+x\right)\left(y-x\right)\)

\(=\left(x-y\right)\left(x-2y+z\right)\left(x-z\right)-\left(x-z\right)\left(y-2z+x\right)\left(x-y\right)\)

\(=\left(x-y\right)\left(x-z\right)\left(x-2y+z-y+2z-x\right)\)

\(=\left(x-y\right)\left(x-z\right)\left(3z-3y\right)\)

\(=3\left(x-y\right)\left(x-z\right)\left(z-y\right)\)

c, \(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(y-x\right)-y^2z^2\left[\left(y-x\right)-\left(z-x\right)\right]-z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(y-x\right)-y^2z^2\left(y-x\right)+y^2z^2\left(z-x\right)-z^2x^2\left(z-x\right)\)

\(=\left(x^2y^2-y^2z^2\right)\left(y-x\right)+\left(y^2z^2-z^2x^2\right)\left(z-x\right)\)

\(=y^2\left(x-z\right)\left(x+z\right)\left(y-x\right)+z^2\left(y-x\right)\left(x+y\right)\left(z-x\right)\)

\(=y^2\left(x-z\right)\left(x+z\right)\left(y-x\right)-z^2\left(y-x\right)\left(x+y\right)\left(x-z\right)\)

\(=\left(x-z\right)\left(y-x\right)\left[y^2\left(x+z\right)-z^2\left(x+y\right)\right]\)

\(=\left(x-z\right)\left(y-x\right)\left(y^2x+y^2z-z^2x-z^2y\right)\)

\(=\left(x-z\right)\left(y-x\right)\left[x\left(y^2-z^2\right)+yz\left(y-z\right)\right]\)

\(=\left(x-z\right)\left(y-x\right)\left[x\left(y-z\right)\left(y+z\right)+yz\left(y-z\right)\right]\)

\(=\left(x-z\right)\left(y-x\right)\left(y-z\right)\left(xy+xz+yz\right)\)

d, \(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3xyz-3xy\left(x+y\right)\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

2 tháng 7 2021

a) xy(x + y) + yz(y + z) + xz(z + x) + 3xyz

= xy(X + y + z)  + yz(x + y + z) + xz(X + y + z)

= (x + y +z)(xy + yz+ xz)

b) xy(x + y) - yz(y + z) - xz(z - x)

= x2y + xy2 - y2z - yz2 - xz2 + x2z

= x2(y + z) - yz(y + z) + x(y2 - z2)

= x2(y + z) - yz(y + z) + x(y + z)(y - z)

= (y + z)(x2 - yz + xy - xz)

= (y + z)[x(x + y) - z(x + y)]

= (y + z)(x + y)(x - z)

c) x(y2 - z2) + y(z2 - x2) + z(x2 - y2)

 = x(y - z)(y + z) + yz2 - yx2 + x2z - y2z

= x(y - z)(y + z) - yz(y - z) - x2(y - z)

= (y - z)((xy + xz - yz - x2)

= (y - z)[x(y - x) - z(y - x)]

= (y - z)(x - z)(y -x) 

7 tháng 9 2019

Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath

19 tháng 4 2020

Trả lời :

Tham khảo link này : https://olm.vn/hoi-dap/detail/6401290031.html

- Hok tốt !

^_^