K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2018

Ta có:

\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\)\(\frac{1}{19}\)

\(B=\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{15}\right)+\left(\frac{1}{16}+...+\frac{1}{19}\right)\)

\(\Rightarrow B>\left(\frac{1}{15}+\frac{1}{15}+\frac{1}{15}+...+\frac{1}{15}\right)+\left(\frac{1}{20}+...+\frac{1}{20}\right)\)

     \(B>\frac{4}{5}+\frac{1}{5}\)

    \(B>1\)\(\left(đpcm\right)\)

12 tháng 6 2018

\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{20}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{19}{20}\)

\(=\frac{1.2.3.....19}{2.3.4.....20}\)

\(=\frac{1}{20}\)

12 tháng 6 2018

\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{20}\right)\)

\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{18}{19}.\frac{19}{20}\)

\(B=\frac{1}{20}\)

Hok tốt

28 tháng 4 2017

< 1 nhé 

28 tháng 4 2017

Ta có: \(\frac{3}{1^2.2^2}=\frac{3}{1.4}=1-\frac{1}{4}\)\(\frac{5}{2^2.3^2}=\frac{5}{4.9}=\frac{1}{4}-\frac{1}{9}\)\(\frac{7}{3^2.4^2}=\frac{7}{9.16}=\frac{1}{9}-\frac{1}{16}\); ...; \(\frac{39}{19^2.20^2}=\frac{39}{361.400}=\frac{1}{361}-\frac{1}{400}\)

Gọi tổng đó là A => A=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{361}-\frac{1}{400}\)

=> \(A=1-\frac{1}{400}=\frac{399}{400}< \frac{400}{400}=1\)

=> A < 1

5 tháng 5 2019

A = 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/100^2

1/2^2 < 1/1*2

1/3^2 < 1/2*3

1/4^2 < 1/3*4

...

1/100^2 < 1/99*100

=> A < 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/99*100

=> A < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100

=> A < 1 - 1/100

=> A < 1

minh deo can ban k dau :((

5 tháng 5 2019

\(a,\frac{1}{2}x+\frac{3}{5}(x-2)=3\)

\(\Rightarrow\frac{1}{2}x+\frac{3}{5}x-\frac{6}{5}=3\)

\(\Rightarrow\left[\frac{1}{2}+\frac{3}{5}\right]x=3+\frac{6}{5}\)

\(\Rightarrow\left[\frac{5}{10}+\frac{6}{10}\right]x=\frac{21}{5}\)

\(\Rightarrow\frac{11}{10}x=\frac{21}{5}\)

\(\Rightarrow x=\frac{21}{5}:\frac{11}{10}=\frac{21}{5}\cdot\frac{10}{11}=\frac{21}{1}\cdot\frac{2}{11}=\frac{42}{11}\)

Vậy x = 42/11

13 tháng 8 2017

Hình như phần 1 đề sai.Nếu C nhỏ nhất thì n không có giá trị thuộc Z.Nếu C lớn nhất thì n=(-1)

2.a.x/7+1/14=(-1)/y

<=>2x/14+1/14=(-1)/y

<=>2x+1/14=(-1)/y

=>(2x+1).y=14.(-1)

<=>(2x+1).y=(-14)

(2x+1) và y là cặp ước của (-14).

(-14)=(-1).14=(-14).1

Ta có bảng giá trị:

2x+1-1141-14
2x-2130-15
x-113/20-15/2
y14-1-141
Đánh giáchọnloạichọnloại

Vậy(x,y) thuộc{(-1;14);(0;-14)}

b.x/9+-1/6=-1/y

<=>2x/9+-3/18=-1/y

<=>2x+(-3)/18=-1/y

=>[2x+(-3)].y=-1.18

<=>(2x-3).y=-18

(2x-3) và y là cặp ước của -18

-18=-1.18=-18.1

Ta có bảng giá trị:

2x-3-1181-18
2x2214-15
x121/22-15/2
y18-1-181
Đánh giáchọnloạichọnloại

Vậy(x;y) thuộc{(1;18);(4;-18)}

16 tháng 3 2018

\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}...+\frac{19}{9^2.10^2}\)

=> \(A=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}...+\frac{19}{81.100}=\left(\frac{1}{1}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{16}\right)+...+\left(\frac{1}{81}-\frac{1}{100}\right)\)

=> \(A=\frac{1}{1}-\frac{1}{100}=1-\frac{1}{100}< 1\)

=> A <1 

(Là nhỏ hơn 1 chứ không phải lớn hơn 1 bạn nhé)

12 tháng 4 2016

1/32<1/2x3

1/42<1/3x4

.......

1/1002<1/99x100

từ đây => 1/32+1/42+....+1/1002<1/2x3+1/3x4+1/4x5+........1/99x100

suy ra..........< 1/2-1/3+1/3-1/4+1/4-1/5................+1/99-1/100

hay............< 1/2 -100

hay........<1/2 vậy 1/32+1/42+.....+1/1002<1/2

14 tháng 3 2020

Ta có: 

\(4\left(1+5+5^2+...+5^9\right)=5\left(1+5+5^2+...+5^9\right)-\left(1+5+5^2+...+5^9\right)\)

\(=5+5^2+5^3+...+5^{10}-1-5-5^2-...-5^9\)

\(=5^{10}-1+\left(5-5\right)+\left(5^2-5^5\right)+..+\left(5^9-5^9\right)\)

\(=5^{10}-1\)

=> \(1+5+5^2+...+5^9=\frac{5^{10}-1}{4}\)

Tương tự: \(1+5+5^2+...+5^8=\frac{5^9-1}{4}\)

\(1+3+3^2+...+3^9=\frac{3^{10}-1}{2}\)

\(1+3+3^2+...+3^8=\frac{3^9-1}{2}\)

=> \(A=\frac{5^{10}-1}{5^9-1}>\frac{5^{10}-1}{5^9}=5-\frac{1}{5^9}>4;\)

\(B=\frac{3^{10}-1}{3^9-1}< \frac{3^{10}}{3^9-1}=3+\frac{3}{3^9-1}< 4;\)

=> A > B.