K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2021

\(P=9\sqrt{x}-\dfrac{\sqrt{x}-1}{\sqrt{x}}=9\sqrt{x}-1+\dfrac{1}{\sqrt{x}}\\ \ge2\sqrt{\dfrac{9\sqrt{x}}{\sqrt{x}}}-1=2\sqrt{9}-1=5\)

Dấu \("="\Leftrightarrow9\sqrt{x}=\dfrac{1}{\sqrt{x}}\Leftrightarrow9x=1\Leftrightarrow x=\dfrac{1}{9}\)

21 tháng 9 2021

anh dùng BĐT nào thế

Bài 1: 

a: \(P=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

b: \(x=2+2\sqrt{5}+2-2\sqrt{5}=4\)

Khi x=4 thì \(P=\dfrac{4+2+1}{2}=\dfrac{7}{2}\)

 

12 tháng 9 2018

a, \(P=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\) (ĐK: \(x\ge0,x\ne4,x\ne9\))

\(=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

b, ĐK: \(x\ge0,x\ne4,x\ne9\)

\(\dfrac{1}{P}=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1-4}{\sqrt{x}+1}=1-\dfrac{4}{\sqrt{x}+1}\)

Ta có: \(x\ge0\forall x\in TXĐ\Leftrightarrow\sqrt{x}\ge0\)\(\Leftrightarrow\sqrt{x}+1\ge1\Leftrightarrow\dfrac{1}{\sqrt{x}+1}\le1\Leftrightarrow\dfrac{4}{\sqrt{x}+1}\le4\)\(\Leftrightarrow-\dfrac{4}{\sqrt{x}+1}\ge-4\Leftrightarrow1-\dfrac{4}{\sqrt{x}+1}\ge-3\)

Dấu bằng xảy ra \(\Leftrightarrow\sqrt{x}+1=1\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\left(TM\right)\)

Vậy GTNN của \(\dfrac{1}{P}=-3\Leftrightarrow x=0\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2018

Lời giải:

Đặt \(\sqrt{x}=a(a\ge 0)\)

Khi đó: \(P=\frac{4a}{3(a^2-a+1)}\)

Để \(P=\frac{8}{9}\Rightarrow \frac{4a}{3(a^2-a+1)}=\frac{8}{9}\)

\(\Rightarrow \frac{a}{a^2-a+1}=\frac{2}{3}\Rightarrow 3a=2(a^2-a+1)\)

\(\Leftrightarrow 2a^2-5a+2=0\Leftrightarrow (a-2)(2a-1)=0\)

\(\Rightarrow \left[\begin{matrix} a-2=0\\ 2a-1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} a=2=\sqrt{x}\\ a=\frac{1}{2}=\sqrt{x}\end{matrix}\right.\) \(\Rightarrow \left[\begin{matrix} x=4\\ x=\frac{1}{4}\end{matrix}\right.\) (t/m)

b)

\(a\geq 0; a^2-a+1=(a-\frac{1}{2})^2+\frac{3}{4}>0\)

Do đó: \(P=\frac{4}{3}.\frac{a}{a^2-a+1}\geq \frac{4}{3}.0=0\)

Vậy \(P_{\min}=0\Leftrightarrow a=0\Leftrightarrow x=0\)

-------

Áp dụng BĐT Cô-si: \(a^2+1\geq 2a\Rightarrow a^2-a+1\geq 2a-a=a\)

\(\Rightarrow \frac{a}{a^2-a+1}\leq \frac{a}{a}=1\Rightarrow P=\frac{4}{3}.\frac{a}{a^2-a+1}\leq \frac{4}{3}.1=\frac{4}{3}\)

Vậy \(P_{\max}=\frac{4}{3}\Leftrightarrow a=1\Leftrightarrow x=1\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2018

Bài 2:

Đặt \(P=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)

\(=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-\sqrt{12-4\sqrt{5}}\)

Có:

\(4+\sqrt{15}=\frac{8+2\sqrt{15}}{2}=\frac{5+3+2\sqrt{3.5}}{2}=\frac{(\sqrt{3}+\sqrt{5})^2}{2}\)

\(\Rightarrow \sqrt{4+\sqrt{15}}=\frac{\sqrt{3}+\sqrt{5}}{\sqrt{2}}\)

Tương tự: \(\sqrt{4-\sqrt{15}}=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\)

\(12-4\sqrt{5}=12-2\sqrt{20}=10+2-2\sqrt{10.2}=(\sqrt{10}-\sqrt{2})^2\)

\(\Rightarrow \sqrt{12-4\sqrt{5}}=\sqrt{10}-\sqrt{2}\)

Vậy \(P=\frac{\sqrt{3}+\sqrt{5}}{\sqrt{2}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}-(\sqrt{10}-\sqrt{2})\)

\(=\sqrt{2}\)

5 tháng 12 2018

1.ĐK:\(x\ge0,x\ne9\)

\(P=\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\dfrac{2\sqrt{x}-2-\sqrt{x}-3}{\sqrt{x}-3}\)

\(=\left[\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right].\dfrac{\sqrt{x}-3}{\sqrt{x}-5}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-5\right)}.\)

Để \(P< \dfrac{-1}{2}\Leftrightarrow\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-5\right)}< \dfrac{-1}{2}\)

11 tháng 9 2018

a) tương tự : https://hoc24.vn/hoi-dap/question/650070.html

b) ta có : \(A=\dfrac{x\sqrt{x}-6x+9\sqrt{x}}{4\left(\sqrt{x}-1\right)}.\left(\dfrac{3\sqrt{x}-5}{\sqrt{x}-3}-1\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)^2}{4\left(\sqrt{x}-1\right)}.\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}\right)=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2}=\dfrac{x-3\sqrt{x}}{2}\)

\(\Rightarrow x-3\sqrt{x}-2A=0\)

vì phương trình này luôn có nghiệm \(\Rightarrow\Delta\ge0\)

\(\Leftrightarrow3^2-4\left(-2A\right)=9+8A\ge0\Leftrightarrow A\ge\dfrac{-9}{8}\)

\(\Rightarrow\) GTNN của \(A=\dfrac{-9}{8}\) khi \(\sqrt{x}=\dfrac{-b}{2a}=\dfrac{3}{2}\)\(\Leftrightarrow x=\dfrac{9}{4}\)

14 tháng 7 2018

a)

\(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) (ĐKXĐ \(a>0\))

\(\Leftrightarrow A=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-2\sqrt{a}\)

\(\Leftrightarrow a+\sqrt{a}-2\sqrt{a}=a-\sqrt{a}\) (Với \(a>0\))

b)

Để A = 2 \(\Rightarrow a-\sqrt{a}=2\)

\(\Leftrightarrow\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)=0\)

\(\Leftrightarrow a=4\left(tm\right)\)

Vậy a = 4 thì A = 2 .

c)

\(A=a-\sqrt{a}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\) Với \(\forall a>0\)

Vậy GTNN của A là \(-\dfrac{1}{4}\) khi a = \(\dfrac{1}{4}\) .

27 tháng 10 2022

1: Sửa đề: \(B=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)

2: Để B<=-1/2 thì B+1/2<=0

=>-3/căn x+3+1/2<=0

=>-6+căn x+3<=0

=>căn x<=3

=>0<x<9

3: Để B là số nguyên thì \(\sqrt{x}+3=3\)

=>x=0

22 tháng 11 2018

a) Để biểu thức P xác định thì \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

Vậy ĐKXĐ:x\(\ge0\),x\(\ne9\)

\(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}=\left[\dfrac{2x-6\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{\left(-3\sqrt{x}-3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}=\dfrac{-3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}=\dfrac{-3}{\sqrt{x}+3}\)

b) Ta có \(P< \dfrac{1}{2}\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}< \dfrac{1}{2}\Leftrightarrow-6< \sqrt{x}+3\Leftrightarrow\sqrt{x}>-9\)

\(\sqrt{x}\ge0\) và 0>-9

Vậy \(x\ge0\)

Kết hợp với ĐKXĐ, Vậy \(x\ge0\)\(x\ne9\) thì P<\(\dfrac{1}{2}\)

Y
15 tháng 4 2019

\(N=\frac{B}{\sqrt{x}}=\frac{x-3\sqrt{x}+2}{\sqrt{x}}\cdot\frac{1}{\sqrt{x}}=\frac{x-3\sqrt{x}+2}{x}\)

\(N=1-\frac{3\sqrt{x}}{x}+\frac{2}{x}\)

\(N=2\left(\frac{1}{x}-\frac{3}{2\sqrt{x}}+\frac{1}{2}\right)\)

\(N=2\left[\left(\frac{1}{\sqrt{x}}\right)^2-2\cdot\frac{1}{\sqrt{x}}\cdot\frac{3}{4}+\frac{9}{16}-\frac{1}{16}\right]\)

\(N=2\left(\frac{1}{\sqrt{x}}-\frac{3}{4}\right)^2-\frac{1}{8}\) \(\ge-\frac{1}{8}\forall x\)

\(N=-\frac{1}{8}\) \(\Leftrightarrow\frac{1}{\sqrt{x}}=\frac{3}{4}\)\(\Leftrightarrow x=\frac{16}{9}\)

Vậy Min N \(=-\frac{1}{8}\Leftrightarrow x=\frac{16}{9}\)