Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có BĐT:\(\left(a^3+b^3+c^3\right)\left(m^3+n^3+p^3\right)\left(x^3+y^3+z^3\right)\ge\left(axm+byn+czp\right)^3\)(Cách c/m bn có thể tìm trên mạng)
Áp dụng ta có:\(\left(a^3+b^3+c^3\right).9\ge\left(a+b+c\right)^3=1\)
\(\Leftrightarrow a^3+b^3+c^3\ge\frac{1}{9}\)
Vì \(a,b,c\ge0;a+b+c=1\)\(\Rightarrow0\le a,b,c\le1\)
Đến đây làm tiếp nhé.
Sử dụng Cô-si đi cho đơn giản:
Dự đoán điểm rơi \(a=b=c=\frac{1}{3}\)
\(a\sqrt{a}+a\sqrt{a}+\frac{1}{3\sqrt{3}}\ge3\sqrt[3]{\frac{a^3}{3\sqrt{3}}}=\sqrt{3}a\)
Tương tự: \(b\sqrt{b}+b\sqrt{b}+\frac{1}{3\sqrt{3}}\ge\sqrt{3}b\); \(c\sqrt{c}+c\sqrt{c}+\frac{1}{3\sqrt{3}}\ge\sqrt{3}c\)
Cộng vế với vế:
\(2\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)+\frac{1}{\sqrt{3}}\ge\sqrt{3}\left(a+b+c\right)=\sqrt{3}\)
\(\Rightarrow2\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)\ge\frac{2\sqrt{3}}{3}\)
\(\Rightarrow a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\ge\frac{\sqrt{3}}{3}\)
Dấu "=" khi \(a=b=c=\frac{1}{3}\)
Ta có \(a+b+c\le\sqrt{3}\)
\(\Rightarrow\left(a+b+c\right)^2\le3\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{3}\le1\)
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ac\)
\(\Rightarrow1\ge ab+bc+ac\)
\(\Rightarrow\left\{\begin{matrix}1+a^2\ge a^2+ab+bc+ac\\1+b^2\ge b^2+ab+bc+ac\\1+c^2\ge c^2+ab+bc+ac\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}\sqrt{1+a^2}\ge\sqrt{a^2+ab+bc+ca}\\\sqrt{1+b^2}\ge\sqrt{b^2+ab+bc+ca}\\\sqrt{1+c^2}\ge\sqrt{c^2+ab+bc+ca}\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}\frac{a}{\sqrt{1+a^2}}\le\frac{a}{\sqrt{a^2+ab+bc+ac}}\\\frac{b}{\sqrt{1+b^2}}\le\frac{b}{\sqrt{b^2+ab+bc+ac}}\\\frac{c}{\sqrt{1+c^2}}\le\frac{c}{\sqrt{c^2+ab+bc+ac}}\end{matrix}\right.\)
\(\Rightarrow\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)
\(\Rightarrow\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{a}{\sqrt{a\left(a+b\right)+c\left(a+b\right)}}+\frac{b}{\sqrt{b\left(b+a\right)+c\left(a+b\right)}}+\frac{c}{\sqrt{c\left(c+a\right)+b\left(c+a\right)}}\)
\(\Rightarrow\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)
Xét \(\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)
Áp dụng bất đẳng thức Cauchy ngược dấu cho 2 bộ số thực không âm
\(\Rightarrow\left\{\begin{matrix}\sqrt{\left(a+b\right)\left(a+c\right)}\ge\frac{2a+b+c}{2}\\\sqrt{\left(a+b\right)\left(b+c\right)}\ge\frac{a+2b+c}{2}\\\sqrt{\left(c+a\right)\left(c+b\right)}\ge\frac{a+b+2c}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{2a}{2b+b+c}\\\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}\le\frac{2b}{a+2b+c}\\\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{2c}{a+b+2c}\end{matrix}\right.\)
\(\Rightarrow\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le2\left(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\right)\)
Chứng minh rằng: \(2\left(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\right)\le\frac{3}{2}\)
\(\Leftrightarrow\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\le\frac{3}{4}\)
Áp dụng bất đẳng thức \(\frac{1}{a+b}\ge\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0
\(\Rightarrow\frac{a}{2a+b+c}=\frac{a}{a+c+a+b}\le\frac{a}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)
\(\Rightarrow\frac{b}{a+2b+c}=\frac{b}{a+b+b+c}\le\frac{b}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)
\(\Rightarrow\frac{c}{a+b+2c}=\frac{c}{a+c+b+c}\le\frac{c}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)
\(\Rightarrow VT\le\frac{a}{4\left(a+b\right)}+\frac{a}{4\left(a+c\right)}+\frac{b}{4\left(a+b\right)}+\frac{b}{4\left(b+c\right)}+\frac{c}{4\left(a+c\right)}+\frac{c}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\frac{a}{4\left(a+b\right)}+\frac{b}{4\left(a+b\right)}+\frac{a}{4\left(a+c\right)}+\frac{c}{4\left(a+c\right)}+\frac{b}{4\left(b+c\right)}+\frac{c}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\left(đpcm\right)\)
\(\Rightarrow2\left(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\right)\le\frac{3}{2}\)
\(\Rightarrow\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{3}{2}\)
Vậy \(\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{3}{2}\left(đpcm\right)\)
Lời giải khác:
Áp dụng bđt Cauchy-Schwarz:
\((a^2+1)(1+3)\geq (a+\sqrt{3})^2\)\(\Rightarrow \frac{a}{\sqrt{a^2+1}}\leq \frac{2a}{a+\sqrt{3}}\)
Thực hiện tương tự với các phân thức còn lại:
\(\Rightarrow \frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\leq 2\left ( \frac{a}{a+\sqrt{3}}+\frac{b}{b+\sqrt{3}}+\frac{c}{c+\sqrt{3}} \right )=2A\) $(1)$
Lại có:
\(\)\(A=\left ( 1-\frac{\sqrt{3}}{a+\sqrt{3}} \right )+\left ( 1-\frac{\sqrt{3}}{b+\sqrt{3}} \right )+\left ( 1-\frac{\sqrt{3}}{c+\sqrt{3}} \right )=3-\sqrt{3}\left ( \frac{1}{a+\sqrt{3}}+\frac{1}{b+\sqrt{3}}+\frac{1}{c+\sqrt{3}} \right )\)
Cauchy-Schwarz kết hợp với \(a+b+c\leq \sqrt{3}\):
\(A\leq 3-\frac{9\sqrt{3}}{a+b+c+3\sqrt{3}}\leq 3-\frac{9\sqrt{3}}{4\sqrt{3}}=\frac{3}{4}\) $(2)$
Từ \((1),(2)\Rightarrow \text{VT}\leq 2A\leq \frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
2, a, \(a+\dfrac{1}{a}\ge2\)
\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)
\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)
\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)
vậy...................
Câu 1:
\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+5}=3\)
\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)
Đặt \(K=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)
\(\Rightarrow2K=2a\sqrt{b^3+1}+2b\sqrt{c^3+1}+2c\sqrt{a^3+1}=\)\(2a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}+2b\sqrt{\left(c+1\right)\left(c^2-c+1\right)}\)\(+2c\sqrt{\left(a+1\right)\left(a^2-a+1\right)}\)\(\le a\left[\left(b+1\right)+\left(b^2-b+1\right)\right]+b\left[\left(c+1\right)+\left(c^2-c+1\right)\right]\)\(+c\left[\left(a+1\right)+\left(a^2-a+1\right)\right]\)(Theo BĐT AM - GM)
\(=a\left(b^2+2\right)+b\left(c^2+2\right)+c\left(a^2+2\right)\)\(=ab^2+bc^2+ca^2+6\)
Đặt \(M=ab^2+bc^2+ca^2\)
Không mất tính tổng quát, giả sử \(a\ge c\ge b\)thì ta có \(b\left(a-c\right)\left(c-b\right)\ge0\Leftrightarrow abc+b^2c\ge ab^2+bc^2\)
\(\Leftrightarrow ab^2+bc^2+ca^2\le abc+b^2c+ca^2\)
hay \(M\le abc+b^2c+ca^2\le2abc+b^2c+ca^2=c\left(a+b\right)^2\)\(=4c.\frac{a+b}{2}.\frac{a+b}{2}\le\frac{4}{27}\left(c+\frac{a+b}{2}+\frac{a+b}{2}\right)^3\)\(=\frac{4\left(a+b+c\right)^3}{27}=4\)
\(\Rightarrow2K\le10\Rightarrow K\le10\)
Vậy \(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)
Đẳng thức xảy ra khi \(\left(a,b,c\right)=\left(2,0,1\right)\)
Kiệt cop sai đáp án rồi kìa :))
Đoạn cuối không giả sử \(a\ge c\ge b\) được đâu nhá
Mà phải giả sử b là số nằm giữa a và c
Khi đó:
\(\left(b-a\right)\left(b-c\right)\le0\Leftrightarrow b^2+ac\le ab+bc\)
\(\Leftrightarrow ab^2+a^2c\le a^2b+abc\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2=b\left(a^2+ac+c^2\right)\)
\(\le b\left(a^2+2ac+c^2\right)=b\left(a+c\right)^2=b\left(3-b\right)^2\)
Ta chứng minh \(b\left(3-b\right)^2\le4\Leftrightarrow\left(b-1\right)^2\left(b-4\right)\le0\) *đúng *
Vậy ............................
Ta có:
\(b\ge0\Rightarrow b^3+1\ge1\Rightarrow a\sqrt{b^3+1}\ge a\)
Hoàn toàn tương tự: \(b\sqrt{c^3+1}\ge b\) ;\(c\sqrt{a^3+1}\ge c\)
Cộng vế:
\(P\ge a+b+c=3\) (đpcm)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và hoán vị
Lại có:
\(a\sqrt{b^3+1}=a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\dfrac{a\left(b^2+2\right)}{2}\)
Tương tự: \(b\sqrt{c^3+1}\le\dfrac{b\left(c^2+2\right)}{2}\) ; \(c\sqrt{a^3+1}\le\dfrac{c\left(a^2+2\right)}{2}\)
\(\Rightarrow P\le\dfrac{1}{2}\left(ab^2+bc^2+ca^2\right)+a+b+c=\dfrac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)
\(\Rightarrow P\le\dfrac{1}{2}\left(ab^2+bc^2+ca^2+2abc\right)+3\)
Nên ta chỉ cần chứng minh: \(Q=ab^2+bc^2+ca^2+2abc\le4\)
Không mất tính tổng quát, giả sử \(a=mid\left\{a;b;c\right\}\)
\(\Rightarrow\left(a-b\right)\left(a-c\right)\le0\Leftrightarrow a^2+bc\le ab+ac\)
\(\Rightarrow ca^2+bc^2\le abc+ac^2\)
\(\Rightarrow Q\le ab^2+ac^2+2abc=a\left(b+c\right)^2=\dfrac{1}{2}.2a\left(b+c\right)\left(b+c\right)\le\dfrac{1}{54}\left(2a+2b+2c\right)^3=4\) (đpcm)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;2;0\right)\) và 1 số hoán vị của chúng