K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2016

Ta có 

\(\sqrt[3]{3a3b}\le\frac{3a+3b+1}{3}\)

\(\sqrt[3]{3b3c}\le\frac{3b+3c+1}{3}\)

\(\sqrt[3]{3a3c}\le\frac{3a+3c+1}{3}\)

Cộng vế theo vế ta được

\(\sqrt[3]{9}\left(\sqrt[3]{ab}+\sqrt[3]{bc}+\sqrt[3]{ac}\right)\le2\left(a+b+c\right)+1\)

<=> \(\sqrt[3]{ab}+\sqrt[3]{bc}+\sqrt[3]{ac}\le\sqrt[3]{3}\)

20 tháng 10 2017

nhầm mọi người ơi chứng minh cho mình <=\(\dfrac{3}{\sqrt{2}}\)

26 tháng 12 2017

https://goo.gl/BjYiDy

22 tháng 4 2020

\(VT=\frac{1}{\sqrt{abc}}\Sigma_{cyc}\left(\frac{1}{\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{2}{\sqrt{c}}}\right)\le\frac{1}{\sqrt{abc}}\Sigma_{cyc}\left(\frac{\sqrt{a}+\sqrt{b}+2\sqrt{c}}{16}\right)=\frac{1}{\sqrt{abc}}\)

Dấu "=" xay ra khi \(a=b=c=\frac{16}{9}\)