K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2020

Ta có:\(a^2-5a+2=0\Rightarrow a^2=5a-2\)

\(P=a^5-a^4-18a^3+9a^2-5a+2017+\frac{a^4-40a^2+4}{a^2}\)

\(=a^5-a^4-18a^3+9a^2-5a+2017+\frac{\left(a^2-2\right)^2-36a^2}{a^2}\)

\(=a^5-a^4-18a^3+9a^2-5a+2015+2+\frac{\left(a^2-2\right)^2-\left(6a\right)^2}{a^2}\)

\(=\left(a^2-5a+2\right)\left(a^3+4a^2+1\right)+2015+\frac{\left(a^2-2+6a\right)\left(a^2-2-6a\right)}{a^2}\)

\(=0\times\left(a^3+4a^2+1\right)+2015+\frac{\left(a^2-2+6a\right)\left(a^2-2-6a\right)}{a^2}\)

\(=0+2015+\frac{\left(a^2-2+6a\right)\left(a^2-2-6a\right)}{a^2}\)

\(=2015+\frac{\left(5a-2-6a-2\right)\left(5a-2+6a-2\right)}{a^2}\)Vì \(a^2=5a-2\)

\(=2015+\frac{-\left(a+4\right)\left(11a-4\right)}{a^2}\)

\(=2015+\frac{-\left(a^2+40a-16\right)}{a^2}\)

\(=2015+\frac{-\left[a^2+8\left(5a-2\right)\right]}{a^2}\)Vì \(a^2=5a-2\)

\(=2015+\frac{-\left(a^2+8a^2\right)}{a^2}\)

\(=2015+\frac{-9a^2}{a^2}\)

\(=2015+\frac{-9}{1}\)

\(=2015-9\)

\(=2006\)

Cre:hoidap247

22 tháng 12 2017

Ta có:

\(a^5-a^4-18a^3+9a^2-5a+2017+\frac{a^4-40a^2+4}{a^2}\)

\(=a^5-5a^4+2a^3+4a^4-20a^3+8a^2+a^2-5a+2+2015+\frac{a^4-40a^2+4}{a^2}\)

\(=\left(a^2-5a+2\right)\left(a^3+4a^2+1\right)+2015+\frac{a^4-40a^2+4}{a^2}\)

\(=2015+\frac{a^4-40a^2+4}{a^2}=\frac{a^4+1970a^2+4}{a^2}\)

\(a^2-5a+2=0\Rightarrow a^2-5a=-2\Rightarrow a^4-10a^3+25a^2=4\)

Ta có : \(\frac{a^4+1970a^2+4}{a^2}=\frac{a^4-10a^3+25a^2+10a^3-50a^2+20a+4a^2-20a+8+1991a^2-4}{a^2}\)

\(=\frac{4+\left(10a+4\right)\left(a^2-5a+2\right)-4+1991a^2}{a^2}\)

\(=\frac{1991a^2}{a^2}=1991\)

1 tháng 12 2018

bị phê

21 tháng 3 2020

1)\(4\left(a^4-1\right)x=5\left(a-1\right)\)

<=>x=\(\frac{5\left(a-1\right)}{a^4-1}\)

<=>x=\(\frac{5\left(a-1\right)}{\left(a-1\right)\left(a+1\right)\left(a^2+1\right)}=\frac{5}{\left(a+1\right)\left(a^2+1\right)}\)

Tương tự ta tính được y=\(\frac{4a^6+4}{5a^4-5a^2+5}\)

Suy ra x.y=\(\frac{5}{\left(a+1\right)\left(a^2+1\right)}.\frac{4\cdot\left(a^6+1\right)}{5\left(a^4-a^2+1\right)}\)=\(\frac{5}{\left(a+1\right)\left(a^2+1\right)}.\frac{4\left(a^2+1\right)\left(a^4-a^2+1\right)}{5\left(a^4-a^2+1\right)}\)

=\(\frac{5}{a+1}\)

Tương tự với x:y

21 tháng 3 2020

\(A=\frac{4.6}{4.2}:\left(\frac{8.10}{6.8}.\frac{12.14}{10.12}.\frac{16.18}{14.16}...\frac{54.56}{54.53}\right)=\frac{6}{2}:\frac{56}{6}=\)

a: \(A=25a^2+50a+25+10\left(a^2-2a-3\right)+a^2-6a+9\)

\(=26a^2+46a+34+10a^2-20a-30\)

\(=36a^2+26a+4\)

b: \(B=\dfrac{1}{4}\left(x^2-2x+1\right)+x^2-1+x^2+2x+1\)

\(=\dfrac{1}{4}x^2-\dfrac{1}{2}x+\dfrac{1}{4}+2x^2+2x\)

\(=\dfrac{9}{4}x^2+\dfrac{3}{2}x+\dfrac{1}{4}\)

Bài 1 Cho biểu thức A = \(\frac{5}{x+3}\)- \(\frac{2}{3-x}\)- \(\frac{3x^{2^{ }}-2x-9}{x^2-9}\)( Với x \(\ne\)- 3 và x\(\ne\)3)a) Rút gon biểu thức Ab) Tính giá trị cua A khi\(|x-2=1|\)c) Tìm giá trị nguyên của x để A có giá trị nguyênBài 2Cho tam giác ABC vuông tại A , gọi m là trung trung điểm của AC . Gọi D là điểm đối xứng với B qua Ma) Chứng minh tứ giác ABCD là hình bình hành b) Gọi N là điểm đối xứng...
Đọc tiếp

Bài 1 

Cho biểu thức A = \(\frac{5}{x+3}\)\(\frac{2}{3-x}\)\(\frac{3x^{2^{ }}-2x-9}{x^2-9}\)( Với x \(\ne\)- 3 và x\(\ne\)3)

a) Rút gon biểu thức A

b) Tính giá trị cua A khi\(|x-2=1|\)

c) Tìm giá trị nguyên của x để A có giá trị nguyên

Bài 2

Cho tam giác ABC vuông tại A , gọi m là trung trung điểm của AC . Gọi D là điểm đối xứng với B qua M

a) Chứng minh tứ giác ABCD là hình bình hành 

b) Gọi N là điểm đối xứng với B qua A . Chứng minh tứ giác ACDN là hình chữ nhật

c) Kéo dài MN cắt BC tại I . Vẽ đường thẳng A song song với MN cắt BC ở K. Chứng minh : KC = 2BK

d) Qua B kẻ dduownfd thẳng song song với MN cắt AC kéo dài tại E. Tam giác ABC cần có thêm điều kiện gì để tứ giác EBMN là hình vuông

Bài 3

Cho a tthoar mãn a2 - 5a + 2 = 0 . Tính giá trị của biểu thức

P = a5 - a4 - 18a3 + 9a-5a + 2017 + (a4 - 40a2 + 4 ) : a2

giúp em với mai em nọp bài

em cảm ơn trước

 

1
20 tháng 3 2020

a) \(ĐKXĐ:x\ne\pm3\)

      \(A=\frac{5}{x+3}-\frac{2}{3-x}+\frac{3x^2-2x-9}{x^2-9}\)

\(\Leftrightarrow A=\frac{5\left(x-3\right)+2\left(x+3\right)-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{5x-15+2x+6-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{-3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{-3x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{-3x}{x+3}\)

b) Khi \(\left|x-2\right|=1\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=1\\2-x=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)

Thay x = 1 vào A, ta được :

\(A=\frac{-3}{1+3}=\frac{-3}{4}\)

Vậy khi \(\left|x-2\right|=1\Leftrightarrow A=-\frac{3}{4}\)

c) Để \(A\inℤ\)

\(\Leftrightarrow\frac{-3x}{x+3}\inℤ\)

\(\Leftrightarrow-3x⋮x+3\)

\(\Leftrightarrow-3\left(x+3\right)+9⋮x+3\)

\(\Leftrightarrow9⋮x+3\)

\(\Leftrightarrow x+3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

\(\Leftrightarrow x\in\left\{-2;-4;0;-6;-12;6\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;-4;0;-6;-12;6\right\}\)