K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2017

Ta có: \(y=1-3x\)

a/ \(M=3x^2+y^2=3x^2+\left(1-3x\right)^2\)

\(\Leftrightarrow12x^2-6x+1=\left(12x^2-\frac{2.2.3x}{2}+\frac{3}{4}\right)+\frac{1}{4}\)

\(=\left(2\sqrt{3}x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Vậy GTNN là 0,25 đạt được khi x = 0,25

b/ \(N=xy=x\left(1-3x\right)=-3x^2+x\)

\(=\left(-3x^2+\frac{2.\sqrt{3}x}{2\sqrt{3}}-\frac{1}{12}\right)+\frac{1}{12}\)

\(=\frac{1}{12}-\left(\sqrt{3}x-\frac{1}{2\sqrt{3}}\right)^2\le\frac{1}{12}\)

Vậy max là \(\frac{1}{12}\) đạt được khi \(x=\frac{1}{6}\)

AH
Akai Haruma
Giáo viên
8 tháng 9 2017

Lời giải:

a)

Áp dụng BĐT Cauchy-Schwarz:

\(4M=(3x^2+y^2)(3+1)\geq (3x+y)^2\)

\(\Leftrightarrow 4M\geq 1\Leftrightarrow M\geq \frac{1}{4}\)

Vậy \(M_{\min}=\frac{1}{4}\Leftrightarrow x=y=\frac{1}{4}\)

b) Với mọi \(x,y\in\mathbb{R}\Rightarrow (3x-y)^2\geq 0\)

\(\Leftrightarrow 9x^2+y^2-6xy\geq 0\Leftrightarrow (3x+y)^2-12xy\geq 0\)

\(\Leftrightarrow xy\leq \frac{(3x+y)^2}{12}=\frac{1}{12}\)

Vậy \(K_{\max}=\frac{1}{12}\Leftrightarrow x=\frac{1}{6};y=\frac{1}{2}\)

NV
4 tháng 6 2020

\(3x^2+2y^2+2z^2+2yz=2\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2zx+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

\(\Leftrightarrow\left(x+y+z\right)^2=2-\left(x-y\right)^2-\left(x-z\right)^2\le2\)

\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

\(B_{min}=-\sqrt{2}\) khi \(\left\{{}\begin{matrix}x-y=0\\x-z=0\\x+y+z=-\sqrt{2}\end{matrix}\right.\) \(\Rightarrow x=y=z=-\frac{\sqrt{2}}{3}\)

\(B_{max}=\sqrt{2}\) khi \(x=y=z=\frac{\sqrt{2}}{3}\)

8 tháng 3 2017

2)

Theo hệ quả của bất đẳng thức Cauchy ta có

\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

Do \(x^2+y^2+z^2\le3\)

\(\Rightarrow3\ge3\left(xy+yz+xz\right)\)

\(\Rightarrow1\ge xy+yz+xz\)

\(\Rightarrow4\ge xy+yz+xz+3\)

\(\Rightarrow\dfrac{9}{4}\le\dfrac{9}{3+xy+xz+yz}\) ( 1 )

Ta có \(C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{3+xy+yz+xz}\) ( 2 )

Từ ( 1 ) và ( 2 )

\(\Rightarrow C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{4}\)

Vậy \(C_{min}=\dfrac{9}{4}\)

Dấu " = " xảy ra khi \(x=y=z=\sqrt{\dfrac{1}{3}}\)

8 tháng 3 2017

Mấy dạng này mik ngu nhất luôn bạn ạ~~

13 tháng 5 2020

Ta có: \(\left(x^2+y^2+2xy+2yz+2xz\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=3\)

\(\Rightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=3\)

\(\Rightarrow\left(x+y+z\right)^2\le3\)

Dấu "=" xảy ra <=> x=y=z

Do đó \(-\sqrt{3}\le x+y+z\le\sqrt{3}\)

\(\Rightarrow-\sqrt{3}\le A\le\sqrt{3}\)

=> \(\hept{\begin{cases}Min_A=-\sqrt{3}\Leftrightarrow x=y=z=\frac{-\sqrt{3}}{3}\\Max_A=\sqrt{3}\Leftrightarrow x=y=z=\frac{\sqrt{3}}{3}\end{cases}}\)

a: \(A=3\left(x^2-3x+\dfrac{5}{3}\right)\)

\(=3\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{7}{12}\right)\)

\(=3\left(x-\dfrac{3}{2}\right)^2-\dfrac{7}{4}\ge-\dfrac{7}{4}\)

Dấu '=' xảy ra khi x=3/2

b: \(B=\left(x-1\right)\left(3x+4\right)\)

\(=3x^2+4x-3x-4\)

\(=3x^2+x-4\)

\(=3\left(x^2+\dfrac{1}{3}x-\dfrac{4}{3}\right)\)

\(=3\left(x^2+2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}-\dfrac{49}{36}\right)\)

\(=3\left(x+\dfrac{1}{6}\right)^2-\dfrac{49}{12}\ge-\dfrac{49}{12}\)

Dấu '=' xảy ra khi x=-1/6

c: \(C=-\left(x^2+x+y^2-y-1\right)\)

\(=-\left(x^2+x+\dfrac{1}{4}+y^2-y+\dfrac{1}{4}-\dfrac{3}{2}\right)\)

\(=-\left(x+\dfrac{1}{2}\right)^2-\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{2}\le\dfrac{3}{2}\)

Dấu '=' xảy ra khi x=-1/2 và y=1/2