Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(m-1\right)^2-4.2.\left(-2\right)=\left(m-1\right)^2+16>0\)
nên PT luôn có 2 nghiệm phân biệt
Mình ms học lp 6 nên sai thông cảm
Xác định : a = 2 ; b = m-1 ; c = -2
Ta có : \(\Delta=b^2-4ac=\left(m-1\right)^2-4.2.\left(-2\right)\)
\(=\left(m-1\right)^2+16\)
Vì \(\hept{\begin{cases}\left(m-1\right)^2\ge0\\16>0\end{cases}=>\left(m-1\right)^2}+16>0\)
Nên pt có 2 nghiệm phân biệt
- Phương trình: \(x^2+\left(m-1\right)x-6=0.\)ở dạng tổng quát: \(ax^2+bx+c=0\)có hệ số \(a=1;b=\left(m-1\right);c=-6\)
- \(x_1\)và \(x_2\)là nghiệm của phương trình trên thì thỏa mãn: (*) \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=1-m\\x_1\cdot x_2=\frac{c}{a}=-6\end{cases}}\)\(\Rightarrow x_1;x_2\)trái dấu
- Ta có \(A=\left(x_1^2-9\right)\cdot\left(x_2^2-4\right)=\left(x_1x_2\right)^2-4x_1^2-9x_2^2+36=\)
- \(=\left(-6\right)^2-\left(4x_1^2+2\cdot2x_1\cdot3x_2+9x_2^2\right)+12x_1x_2+36=72+12\cdot\left(-6\right)-\left(2x_1+3x_2\right)^2\)
- \(=-\left(2x_1+3x_2\right)^2\le0\)
- Vậy, GTLN của A = 0 khi \(2x_1+3x_2=0\Leftrightarrow\frac{x_1}{3}=-\frac{x_2}{2}=P\)thay vào \(x_1\cdot x_2=-6\)ta được \(P^2=1\)
- Nếu \(P=1\)thì \(x_1=3;x_2=-2;\)thay vào \(x_1+x_2=1-m\Leftrightarrow3-2=1-m\Leftrightarrow m=0\)
- Nếu \(P=-1\)thì \(x_1=-3;x_2=2\)thay vào \(x_1+x_2=1-m\Leftrightarrow-3+2=1-m\Leftrightarrow m=2\)
- Vậy có 2 giá trị của m là \(m=0\)và \(m=2\)để A đạt GTLN.
Câu này là hàm số lớp 9 đây :) Sẽ áp dụng Viet :) Cô hướng dẫn thôi nhé ^^
a. Ta tính được
\(\Delta=\left(4m-1\right)^2-4.\left[2\left(m-4\right)\right]=16m^2-16m+33=\left(4m+2\right)^2+29\ge29>0\)
b. Biến đổi \(\left|x_1-x_2\right|=17\Leftrightarrow\left(x_1-x_2\right)^2=289\Leftrightarrow x_1^2+x_2^2-2x_1x_2=289\)
\(=\left(x_1+x_2\right)^2-4x_1x_2=289\)
Theo định lý Viet ta có: \(\hept{\begin{cases}x_1+x_2=1-4m\\x_1x_2=2\left(m-4\right)\end{cases}}\)
Từ đó; \(\left(1-4m\right)^2-4.2.\left(m-4\right)=289\Leftrightarrow16m^2-16m+33=289\Leftrightarrow16m^2-16m-256=0\)
Sau đó em sẽ tìm đc m :)))
\(\Delta=\left(2m-1\right)^2-4\cdot2\left(m-1\right)=4m^2-4m+1-8m+8\)
\(\Delta=4m^2-12m+9=\left(2m-3\right)^2\)
Phương trình có 2 nghiệm phân biệt <=> \(\Delta>0\)
<=> \(\left(2m-3\right)^2>0\)
<=> 2m-3 \(\ne\)0
<=> m \(\ne\)\(\frac{3}{2}\)
ta có phương trình có 2 nghiệm dương phân biệt
\(\hept{\begin{cases}\Delta>0\\p>0\\s>0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne\frac{3}{2}\\\frac{m-1}{2}>0\\\frac{1-2m}{2}>0\end{cases}\Leftrightarrow}\hept{\begin{cases}m-1>0\\1-2m>0\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}m>1\\2m< 1\end{cases}\Leftrightarrow m=\varnothing}\)
vậy không có giá trị thỏa mãn