\(\frac{x}{x^2+x+1}=\frac{1}{4}\)
                   Chứng...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 3 2019

\(\dfrac{x}{x^2+x+1}=\dfrac{1}{4}\Leftrightarrow4x=x^2+x+1\) (1)

Thay \(x=1\) vào thấy không đúng \(\Rightarrow x-1\ne0\) , nhân 2 vế của (1) với \(x-1:\)

\(4x\left(x-1\right)=\left(x-1\right)\left(x^2+x+1\right)\)

\(\Leftrightarrow4x^2-4x=x^3-1\Rightarrow x^3=4x^2-4x+1\)

Mặt khác từ (1) ta cũng có \(x^2=3x-1\) (2)

\(\Rightarrow x^3=4\left(3x-1\right)-4x+1=8x-3\) (đpcm)

\(\Rightarrow x^3-8x+3=0\)

\(A=\dfrac{x^5-8x^3+3x^2+5x^3-40x+15-3x^2+30x-3}{x^4-8x^2+3x+15x^2-3x+15}\)

\(A=\dfrac{x^2\left(x^3-8x+3\right)+5\left(x^3-8x+3\right)-3x^2+30x-3}{x\left(x^3-8x+3\right)+15x^2-3x+15}\)

\(A=\dfrac{-3x^2+30x-3}{15x^2-3x+15}=\dfrac{-3\left(3x-1\right)+30x-3}{15\left(3x-1\right)-3x+15}\)

\(A=\dfrac{21x}{42x}=\dfrac{1}{2}\)

18 tháng 2 2018

6) Ta có

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)

\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)

14 tháng 2 2020

a.=\(\frac{7x+2}{3xy^2}.\frac{x^2y}{14x+4}\)

=\(\frac{7x+2}{3y}.\frac{x^2y}{2\left(7x+2\right)}\)

=\(\frac{1}{3y}.\frac{x}{2}\)

=\(\frac{x}{6y}\)

b.=\(\frac{8xy}{3x-1}.\frac{5-15x}{12xy^3}\)

=\(\frac{2}{3x-1}.\frac{-15x+5}{3y^2}\)

=\(\frac{2}{3x-1}.\frac{-5\left(3x-1\right)}{3y^2}\)

=\(\frac{-10}{3y^2}\)

c.=\(\frac{3\left(x^3+1\right)}{x-1}.\frac{1}{x^2-x+1}\)

=\(\frac{3\left(x+1\right).\left(x^2-x+1\right)}{x-1}.\frac{1}{x^2-x+1}\)

=\(\frac{3x+3}{x-1}\)

d.=\(\frac{4\left(x+3\right)}{.\left(3x-1\right)}.\frac{1-3x}{x^2+3x}\)

=\(\frac{4\left(x+3\right)}{x.\left(3x-1\right)}.\frac{-\left(3x-1\right)}{x\left(x+3\right)}\)

=\(\frac{-4}{x^2}\)

e.=\(\frac{2\left(2x+3y\right)}{x-1}.\frac{1-x^3}{4x^2+12xy+9y^2}\)

=\(2.\frac{-\left(1+x+x^2\right)}{2x+3y}\)

=\(-\frac{2x^2+2x+2}{2x+3y}\)

14 tháng 2 2020

Phần C thiếu x3 , chỗ (x-1)

\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(\left(10x+3\right):8=\left(7-8x\right):12\)

\(\left(10x+3\right).\frac{1}{8}=\left(7-8x\right).\frac{1}{12}\)

\(\frac{5}{4}x+\frac{3}{8}=\frac{7}{12}-\frac{8}{12}x\)

\(\frac{5}{4}x+\frac{8}{12}x=\frac{7}{12}-\frac{3}{8}\)

\(\frac{23}{12}x=\frac{5}{24}\)

\(x=\frac{5}{46}\)

6 tháng 3 2020

E mới lớp 6 nên giải sai thì thông cảm ạ UwU

\(b,\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)

\(< =>\frac{9x}{90}-\frac{7x}{90}=\frac{4}{5}\)

\(< =>\frac{x}{45}=\frac{32}{45}\)

\(< =>x=32\)

\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(< =>\left(10x+3\right).12=\left(7-8x\right).8\)

\(< =>120x+36=56-64x\)

\(< =>184x=56-36=20\)

\(< =>x=\frac{20}{184}=\frac{5}{46}\)

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0 1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\) e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\) g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h,...
Đọc tiếp

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0

1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)

c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\)

g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\)

i, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\); k, \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)

m, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\); n, \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right).\frac{1}{3}\left(x+2\right)\)

p, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x\); q, \(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)

r, \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\); s, \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)

t, \(\frac{2x-8}{6}.\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\); u, \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{3}+\frac{2x-1}{12}\)

v, \(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\); w, \(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x\frac{x-3}{2}}{5}-x+1\)

17

Đây là những bài cơ bản mà bạn!

29 tháng 3 2020

bạn ấy muốn thách xem bạn nào đủ kiên nhẫn đánh hết chỗ này