\(\dfrac{4}{2-x}+\dfrac{100}{x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2017

\(A=\dfrac{18}{2-x}+\dfrac{2}{x}-9=2\left(\dfrac{9}{2-x}+\dfrac{1}{x}\right)-9=2M-9\)

Bunhiacopsky

\(\left(\sqrt{2-x}.\dfrac{3}{\sqrt{2-x}}+\sqrt{x}.\dfrac{1}{\sqrt{x}}\right)^2\le\left(2-x+x\right)\left(\dfrac{18}{2-x}+\dfrac{2}{x}\right)\)

\(M\ge\dfrac{16}{2}=8\)

\(B\ge2.8-9=7\)

B min =7 khi \(\dfrac{18}{2-x}=\dfrac{2}{x}\Rightarrow x=\dfrac{1}{5}\)

21 tháng 9 2017

\(\dfrac{2-x}{3}=x\Rightarrow x=\dfrac{1}{2}\)

5 tháng 9 2017

\(\left\{{}\begin{matrix}x>y\\xy< 0\end{matrix}\right.\)\(\Rightarrow x>0>y\)

Đặt \(y=-z\left(z>0\right)\) thì ta có:

\(P=\left(x+z\right)^2+\left(x+z+\dfrac{1}{x}+\dfrac{1}{z}\right)^2\)

\(\ge\left(x+z\right)^2+\left(x+z+\dfrac{4}{x+z}\right)^2\)

Đặt \(x+z=a\) thì ta có:

\(P\ge a^2+\left(a+\dfrac{4}{a}\right)^2=2a^2+\dfrac{16}{a^2}+8\)

\(\ge8+2\sqrt{2a^2.\dfrac{16}{a^2}}=8+8\sqrt{2}\)

Dấu = xảy ra khi: \(\left\{{}\begin{matrix}x=z\\2a^2=\dfrac{16}{a^2}\end{matrix}\right.\)

\(\Rightarrow x=z=\dfrac{1}{\sqrt[4]{2}}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{\sqrt[4]{2}}\\y=-\dfrac{1}{\sqrt[4]{2}}\end{matrix}\right.\)

15 tháng 11 2018

2.

a/ Áp dụgn hệ quả bđt cô si,ta có :

\(A=xy+yz+zx\le\dfrac{\left(x+y+z\right)}{3}=\dfrac{a^2}{3}\)

Vậy GTLN A =a^2/3 khi x= y =z =a/3

b/Áp dụng BĐT Cô-Si dạng Engel,ta có :

\(B=\dfrac{x^2}{1}+\dfrac{y^2}{1}+\dfrac{z^2}{z}\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{a^2}{3}\)

Vậy GTNN của B = a^2/2 khi x=y=z =a/3

15 tháng 11 2018

\(B=\dfrac{3x}{1-x}+\dfrac{4\left(1-x\right)}{x}+7\ge2\sqrt{\dfrac{3x}{1-x}.\dfrac{4\left(1-x\right)}{x}}+7=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)

Vậy min B = \(\left(2+\sqrt{3}\right)^2\) khi \(\dfrac{3x}{1-x}=\dfrac{4\left(1-x\right)}{x}\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)