Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử (p1+p2):2 là số nguyên tố, Khi đó ta có p1+p2=2d với d nguyên tố
Vì p1, p2 là hai số nguyên tố liên tiếp, và p1 > p2 nên từ p1+p2=2d ⇒ p1 > d > p2 như vậy giữa p1, p2 còn số d là số nguyên tố (mâu thuẫn với giả thuyết) ⇒ (p1+p2);2 là hợp số.
Hoặc:
p2+1 là chẵn
=> (p1+p2)/2 là chẵn
=> Nếu nó là SNT thì p2+1 phải là số tự nhiên.
Mà nó lại là số chẵn
=> p2+1 = 2
=> p2=1 (k phải snt)
Vậy (p1+p2)/2 là hợp số
gọi a1; a2 là 2k+1 và 2k+3
\(\Rightarrow a_1+a_2=2k+1+2k+3=4k+4=4\left(k+1\right)\)
Ta có: \(4⋮2\Rightarrow4\left(k+1\right)⋮2\)
\(\Rightarrow2k+1+2k+3⋮2\)
\(a_1+a_3⋮2\)
\(\Rightarrow a_1+a_2\)là hợp số
đpcm
Tham khảo nhé~
1)vì p là số nguyên tố lớn hơn 3=> p không chia hết cho 3
=>4p không chia hết cho 3
vì p lớn hơn 3 => 2p+1 lớn hơn 3 =>2p+1 không chia hết cho 3
=>2.(2p+1) không chia hết cho 3 =>4p+2 không chia hết cho 3
vì 4p;4p+1;4p+2 là 3 số tự nhiên liên tiếp nên chắc chắn có 1 số chia hết cho 3
mà 4p và 4p+2 không chia hết cho 3=> 4p+1 chia hết cho 3
=>4p+1 là hợp số.
Vì p1<p2 và là 2 số lẻ liên tiếp
=> p1 + 2 = p2
Ta có : (p1 + p2) : 2
= (p1 + p1 + 2) : 2
= (p1 . 2 + 2) : 2
= p1 . 2 : 2 + 2 : 2
= p1 + 1
Vì p1 là số lẻ => p1 + 1 là số chẵn <=> p1 + 1 chia hết cho 2
Vậy (p1 + p2) : 2 là hợp số
Giả sử: các phần tử trong tập hợp A khác tất cả các phần tử trong tập hợp B
Mà A có 15 phần tử là các số nguyên dương không vượt quá 28
B có 14 phần tử là các số nguyên dương không vượt quá 28
=> có 15 + 14 = 29 phần tử khác nhau không và không vượt quá số 28. Điều này không đúng vì Từ 1 đến 28 có 28 số nguyên dương
Vậy có ít nhất 1 phân f tử thuộc A = 1 phần tử thuộc B
Vì p1; p2 là 2 số nguyên tố lẻ liên tiếp (p1< p2) nên p1 + 2 = p2 (1)
Thay (1) vào biểu thức (p1 + p2) /2 ta có:
(p1 + p2) /2
= (p1 + p1 + 2) /2
= (2p1 + 2) /2
= 2(p1 + 1) /2
= p1 + 1
Vì p1 là số lẻ nên p1 + 1 là số chẵn
Mà chỉ có số 2 là số nguyên tố chẵn duy nhất
=> p1 + 1 hay (p1 + p2) /2 là hợp số