Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=3a+5/a+3=3a+9-4/a+3=3.(a+3)-4/a+3=3-4/a+3
Để A là số nguyên thì 4/a+3 là số nguyên suy ra 4 chia hết cho a+3
suy ra a+3 thuộc {1;-1;2;-2;4;-4}
suy ra a thuộc {-2;-4;-1;-5;1;-7}
Giả sử f(n) là số chính phương với mọi n nguyên dương
Đặt \(f\left(n\right)=n^3+On^2+Ln+M\)
Suy ra \(f\left(1\right)=1+O+L+M\);\(f\left(2\right)=8+4O+2L+M\);\(f\left(3\right)=27+9O+3L+M\);\(f\left(4\right)=64+16O+4L+O\) đều là số chính phương.
Mà \(f\left(4\right)-f\left(2\right)\equiv2L\left(mod4\right)\) và\(f\left(4\right)-f\left(2\right)\equiv0,1,-1\left(mod4\right)\)(do \(f\left(4\right),f\left(2\right)\)đều là số chính phương)
Do đó= \(2L\equiv0\left(mod4\right)\)
Suy ra \(2L+2\equiv2\left(mod4\right)\)
Mặt khác \(f\left(3\right)-f\left(1\right)\equiv2L+2\left(mod4\right)\)
=>Mâu thuẫn với điều giả sử (do \(f\left(3\right)-f\left(1\right)\equiv0,1,-1\left(mod4\right)\))
=>Đpcm
Vậy luôn tồn tại n nguyên dương sao cho \(f\left(n\right)=n^3+On^2+Ln+M\)không phải là số chính phương.
Các em đăng câu hỏi lên diễn đàn thì cần đăng đầy đủ nội dung câu hỏi lên trên này. Có như vậy mọi người mới biết yêu cầu của đề bài và trợ giúp các em tốt nhất. Cảm ơn các em đã đồng hành cùng Olm.
Ta có : C = y . \(\frac{8}{5}.x.ab^5.2.x^3.y\)
= \(\frac{16}{5}.a.b^5.x^4.y^2\)
Trong đó : hệ số : \(\frac{16}{5}.a.b^5\)
: biến : x ; y
: bậc : 4,2
\(\frac{2}{x}=2:x=2:\left(...\right)\)
cg là đơn thức đấy !
Hok tốt :))
Câu 11:
=>4,6x=6,21
=>x=1,35
12: \(A=-\left(1.4-x\right)^2-1.4< =-1.4\)
=>x=-1,4
Câu 9:
\(\Leftrightarrow\dfrac{10a+b}{100c+90+d}=\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{12}+...+\dfrac{1}{92}-\dfrac{1}{97}=\dfrac{1}{2}-\dfrac{1}{97}=\dfrac{95}{194}\)
=>a=9; b=5; c=1; d=4
=>a+b+c+d=9+5+1+4=19
Minh Chương
Kết bạn