Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vậy thì kết quả là
\(\sin2\alpha=-0.96\)
\(\)còn \(\cos\left(\alpha+\frac{\pi}{6}\right)\) thì đúng vì -(-0.8) mà sorry thiếu ngủ hôm qua -_-
--.-- \(-\pi>-\frac{3}{2}\pi\) mà
Chắc nhầm đề rồi, phải là \(-\pi>a>-\frac{3}{2}\pi\)mới đúng chứ
\(-\pi>a>-\frac{3}{2}\pi\Leftrightarrow\pi>a>\frac{1}{2}\pi\)
\(\cos a=-\frac{4}{5}\Rightarrow\sin a=\frac{3}{5}\)
\(\sin2a=2\sin a.\cos a=2.\frac{3}{5}.\frac{-4}{5}=-\frac{24}{25}\)
\(\cos2a=2\cos^2a-1=\frac{7}{25}\)
\(\sin\left(\frac{5\pi}{2}-a\right)=\sin\left(\frac{\pi}{2}-a\right)=\cos a=-\frac{4}{5}\)
\(\sin\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{3}{5}-\frac{4}{5}.\frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{10}\)
\(\cos\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{-4}{5}-\frac{\sqrt{2}}{2}.\frac{3}{5}=-\frac{7\sqrt{2}}{10}\)
\(\Rightarrow\tan\left(a+\frac{\pi}{4}\right)=\frac{1}{7}\)
\(\cos^2\left(\frac{a}{2}\right)=\frac{1+\cos a}{2}=\frac{1}{10}\Leftrightarrow\left|\cos\frac{a}{2}\right|=\frac{\sqrt{10}}{10}\)
Mà \(\frac{\pi}{2}>\frac{a}{2}>\frac{\pi}{4}\)
\(\Rightarrow\cos\frac{a}{2}=\frac{\sqrt{10}}{10}\)
Lời giải:
$\sin ^2a+\cos ^2a=1$
$\cos ^2a=1-\sin ^2a=1-(\frac{-5}{13})^2=\frac{144}{169}$
Vì $\pi < a< \frac{3\pi}{2}$ nên $\cos a< 0$
Do đó: $\cos a=-\sqrt{\frac{144}{169}}=\frac{-12}{13}$
$\sin 2a=2\sin a\cos a=2.\frac{-5}{13}.\frac{-12}{13}=\frac{120}{169}$
$\cos 2a=\cos ^2a-\sin ^2a=2\cos ^2a-1=2.\frac{144}{169}-1=\frac{119}{169}$
$\cos a=\cos ^2\frac{a}{2}-\sin ^2\frac{a}{2}$
$=1-2\sin ^2\frac{a}{2}$
$\Leftrightarrow \frac{-12}{13}=1-2\sin ^2\frac{a}{2}$
$\Rightarrow \sin ^2\frac{a}{2}=\frac{25}{26}$
Vì $\pi < a< \frac{3\pi}{2}$ nên $\sin \frac{a}{2}>0$
$\Rightarrow \sin \frac{a}{2}=\frac{5}{\sqrt{26}}$
Do \(\pi< a< \frac{3\pi}{2}\Rightarrow cosa< 0\)
\(cosa=-\sqrt{1-sin^2a}=-\sqrt{1-0,6^2}=-\frac{4}{5}\)
\(tana=\frac{sina}{cosa}=-\frac{3}{4}\)
\(cota=\frac{1}{tana}=-\frac{4}{3}\)
a) Do \(\pi< \alpha< \dfrac{3\pi}{2}\) nên \(tan\alpha,cot\alpha>0\) và \(sin\alpha,cos\alpha< 0\).
\(\left\{{}\begin{matrix}tan\alpha-3cot\alpha=6\\tan\alpha cot\alpha=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}tan\alpha=6+3cot\alpha\\\left(6+3cot\alpha\right)cot\alpha=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}tan\alpha=6+3cot\alpha\\3cot^2\alpha+6cot\alpha-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}tan\alpha=6+3cot\alpha\\cot\alpha=\dfrac{-3+2\sqrt{3}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}tan\alpha=3+2\sqrt{3}\\cot\alpha=\dfrac{-3+2\sqrt{3}}{3}\end{matrix}\right.\).
Có \(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\Rightarrow cos^2\alpha=\dfrac{1}{tan^2\alpha+1}\).
Có thể đề sai.
\(\pi< a< \frac{3\pi}{2}\Rightarrow cosa< 0\)
\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-0,8\)
\(sin2a=2sina.cosa=0,96\)
\(tana=\frac{sina}{cosa}=0,75\)