K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2017

S chia hết cho 10=

S=4+4^2+......+4^2004

4S=4+4^3+......+4^2005

-3S=(4^3-4^3)+......+(4^2004-4^2004)-4^2005+(4+4^2)

S=1.20+4^3.20+.....+4^2005.20+S=20.(4+4^2+....+4^2005) (mà 20 chia hết cho 10)

17 tháng 6 2017

CHỨNG MINH S CHIA HẾT CHO 10 :

\(S=4+4^2+...+4^{2004}\)

\(S=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2003}+4^{2004}\right)\)

\(S=1\left(4+4^2\right)+4^3\left(4+4^2\right)+...+4^{2003}\left(4+4^2\right)\)

\(S=1.20+4^3.20+...+4^{2003}.20\)

\(S=20.\left(1+4^3+...+4^{2003}\right)\)CHIA HẾT CHO 10 (VÌ 20 CHIA HẾT CHO 10 )

\(=>dpcm\)

CHỨNG MINH 3S+4 CHIA HẾT CHO 42004

\(S=4+4^2+4^3+...+4^{2004}\)

\(4S=4+4^2+4^3+...+4^{2005}\)

\(3S=4S-S=4^{2005}-4\)

MÀ 42005 CHIA HẾT CHO 42004

\(=>3S+4\)CHIA HẾT CHO \(4^{2004}\left(dpcm\right)\)

17 tháng 6 2017

\(S=1+4^2+...+4^{2004}\)

\(4S=4+4^3+...+4^{2005}\)

\(\Rightarrow\)\(4S-S=4+4^3+...+4^{2005}-1-4^2-...-4^{2004}\)

\(\Rightarrow\)\(3S=\left(4^3-4^3\right)+...+\left(4^{2004}-4^{2004}\right)-\left(4^{2005}+4-1-4^2\right)\)

\(\Rightarrow\)

16 tháng 11 2016

Ta có \(S=1+3^2+3^4+...+3^{98}\Rightarrow3^2.S=3^2+3^4+3^6+...+3^{100}\)

\(=\left(S-1\right)+3^{100}\)

\(\Rightarrow9S=S+3^{100}-1\Rightarrow S=\frac{3^{100}-1}{8}.\)

Ta thấy \(S=1+3^2+3^4+...+3^{98}=\left(1+3^{98}\right)+\left(3^2+3^4\right)+...+\left(3^{94}+3^{96}\right)\)

Vì 31 có tận cùng là 3; 32 có tận cùng là 9; 33 có tận cùng là 7, 34 có tận cùng là 1 nên 34k+2 có tận cùng là 9; 34k có tận cùng là 1. Vậy thì 1+398 có tận cùng là 0, tương tự 32 + 34 cũng có tận cùng là 0;...

Tóm lại S có tận cùng là 0 hay S chia hết cho 10. 

10 tháng 8 2015

S = 4+42+.....+42004

S = (4+42)+(43+44)+....+(42003+42004)

S = 1(4+42)+43(4+42)+.....+42003(4+42)

S = 1.20 + 43.20 +......+ 42003.20

S = 20(1+43+...+42003) chia hết cho 10 (vì 20 chia hết cho 10)


S = 4+42+43+...+42004

4S = 42+43+44+...+42005

3S = 4S - S = 42005 - 4

=> 3S + 4 = 42005

Mà 42005 chia hết cho 42004

=> 3S + 4 chia hết cho 42004 (đpcm)

20 tháng 1 2017

tại  sao 4^2005 lại chia hết cho 4^2004

6 tháng 4 2017

Câu hỏi của Phương Thảo Trần - Toán lớp 0 | Học trực tuyến

24 tháng 10 2019

minh dang can gap

29 tháng 9 2015

cho S = 1+3+32+ 33 + 3+ .......+ 399

Tổng S có tổng cộng 100 số hạng

S = 1+3+32+ 33 + 3+ .......+ 399 

= (1+3) +(32+ 33) + (3+35) .......(388+ 399 )  có 50 nhóm

= 4 + 32.(1+3)+34(1+3)+........+388(1+3)

= 4+ 32.4+34.4+........+388.4

= 4 (1+ 32+34+........+388) chia hết cho 4

b)

= (1+3 + 32+ 33) + (3+35+36+37) .......(386+387+388+ 399 )  có 100:4 = 25 nhóm

=  (1+3 + 32+ 33) + 34.(1+3 + 32+ 33) .......386.(1+3 + 32+ 33

=  40+ 34.40 .......386.40

= 40 ( 1 +34+ 38+....+386) chia hết cho 40

= 4+ 32.4+34.4+........+388.4

= 4 (1+ 32+34+........+388) chia hết cho 4

8 tháng 2 2016

\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{49}+3^{49}\right)\)

\(S=4+3^2.\left(1+3\right)+3^4.\left(1+3\right)+...+3^{48}.\left(1+3\right)\)

\(S=4+3^2.4+3^4.4+...+3^{48}.4\)

\(S=4.\left(1+3^2+3^4+...+3^{48}\right)\) CHIA HET CHO 4

\(\Leftrightarrow\)S chia het cho 4 (dpcm)