K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2016

dãy số trên ko thể chia hết cho 26 nha

xem lại đề nhé

cảm ơn

nếu đúng dề mk sẽ giải

12 tháng 12 2016

ban nguyen quang tung co gang duoc khong? minh dang can gap

18 tháng 4 2016

S = 1999 + 19992 + … + 19991998

S = 1999 ( 1 + 1999 + 19992 + … + 19991997 )

S = 1999 [ ( 1 + 1999 )( 1 + 19992 + 19994 + … + 19991996 ) ]

S = 1999 [ 2000 ( 1 + 19992 + 19994 + … + 19991996 ) ] chia hết cho 2000.

Vậy ta có điều phải chứng minh. 

18 tháng 11 2015

\(S=3+3^2+3^3+...+3^{1997}+3^{1998}\)

\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)

\(S=3.\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{1995}+3^{1996}+3^{1997}\right)\)

\(S=3.13+13.3^4+...+13.3^{1995}\)

=>S chia hết cho 13 vì mỗi số hạng đều chia hết cho 13

=>dpcm

18 tháng 11 2015

Ta có:

\(S=3+3^2+3^3+...+3^{1997}+3^{1998}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{1997}+3^{1998}\right)\)

\(=12\left(1+3^2+3^4+...+3^{1996}\right)\) chia hết cho  \(2\)

Mặt khác, ta lại có \(S=3+3^2+3^3+...+3^{1997}+3^{1998}\)

\(=\left(3+3^2+3^3\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)

\(=39\left(1+...+3^{1995}\right)\)  chia hết cho  \(13\)

Vì  \(26=2.13\)  và  \(\left(2;13\right)=1\)

Do đó:  \(S\) chia hết cho  \(26\)