K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2015

chtt

**** cho tớ nhé

11 tháng 12 2015

S=2+2^2+2^3+2^4+...+2^59+2^60

=(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)

=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)

=(1+2+2^2+2^3)(2+...+2^57)

=15.(2+...+2^57) chia hết cho 15

20 tháng 11 2015

S=(2+22+23+24)+(25+26+27+28)+...+(257+258+259+260)

S=2(1+2+22+23)+25(1+2+22+23)+...+257(1+2+22+23+24)

S=2.15+25.15+...+257.15

S=15(2+25+...+257) chia hết cho 15

Vậy S chia hết chi 15 

tich ủng hộ cái nha!!!

20 tháng 11 2015

hu!hu! Phan Bá Cường trả lời sau mình mà

21 tháng 3 2020

Đặt \(A=2+2^2+2^3+2^4+....+2^{59}+2^{60}\)

\(\Leftrightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+.....+\left(2^{59}+2^{60}\right)\)

\(\Leftrightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{59}\left(1+2\right)\)

\(\Leftrightarrow A=2\cdot3+2^3\cdot3+....+2^{59}\cdot3\)

\(\Leftrightarrow A=3\cdot\left(2+2^3+....+2^{59}\right)\)

Vậy A chia hết cho 3 (đpcm)

21 tháng 3 2020

*) Chứng mình A \(⋮\)3

Ta có : A= ( 21 + 22 ) + ( 23 + 24 ) + .... + ( 259 + 260)

               =  2. ( 1 + 2 ) + 23 . ( 1 + 2) + ... + 259 . ( 1+ 2)

               = 2  . 3             + 23 . 3        + .....+ 259 . 3

                = 3. (2 + 23 + .... + 259 )  \(⋮\)3

Vậy A \(⋮\)3 => đpcm

 

24 tháng 10 2019

a) Ta có:  T= (2+22+23+24)+(25+26+27+28)+.....+(257+258+259+260)

                  = 30.1     +       25. (2+22+23+24) +.....+ 257. (2+22+23+24)

                  = 30.1     +       2 . 30      +......+ 257 . 30

                  =30 . ( 25+...+257)

Vì 30 chia hết cho 30

=> T chia hết cho 30

 mà 30 chia hết cho 5

=> T chia hết cho 5

các bài còn lại câu a tương tự bạn tự làm nhé

Phương pháp: nhóm các số hạng để đc 1 số chia hết cho số đó

b) Ta có: S = 165+215

                      = 220 + 215

                      =215 . ( 2+ 1)

                  =215 . 33

Vì 33 chia hết cho 33

=> S chia hết cho 33

CHÚC BẠN HOK TỐT!!!!!!

11 tháng 10 2018

\(S=1+2+2^2+2^3+...+2^{2015}\)

\(=\left(1+2+2^2+2^3\right)+...+\left(2^{2012}+2^{2013}+2^{2014}+2^{2015}\right)\)

\(=\left(1+2+2^2+2^3\right)+...+2^{2012}\left(1+2+2^2+2^3\right)\)

\(=1.15+...+2^{2012}.15=15\left(1+...+2^{2012}\right)⋮15^{\left(đpcm\right)}\)

Đặt A=\(2^1+2^2+2^3+2^4+...+2^{59}+2^{60}\)

\(\Rightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(\Rightarrow A=2.3+2^3.3+...+2^{59}.3⋮3\)

⇒A=\(2^1+2^2+2^3+2^4+...+2^{59}+2^{60}\)⋮3(đpcm)

19 tháng 10 2015

Câu hỏi tương tự có đấy

14 tháng 9 2014

a) S=(2+22)+22(2+22)+24(2+22)+.....+298(2+22)

S=(2+22)(1+22+24+....+298)

s=6(1+22+24+....+298)

Vi 6 chia het cho 3.Suyra S chia het cho 3

Moi cac ban xem tiep phan sau vao ngay mai

18 tháng 12 2014

a. S=2+2^2+2^3+2^4+...+2^100

= 2.(1+2)+2^3.(1+2)+2^5.(1+2)+....+2^99(1+2)

=2.3+2^3.3+2^5.3+...+2^99.3

=3.(2+2^2+2^5+...+2^99)

=> 3 chia hết cho 3 

b. S=2+2^2+2^3+2^4+...+2^100

= 2.(1+2+4+8)+2^5.(1+2+4+8)+2^9(1+2+4+8)+...+2^96.(1+2+4+8)

=2.15+2^5.15+2^9.15+...+2^96.15

=> S chia hết cho 15 

 

14 tháng 12 2018

Sai đề rồi bạn nhé

14 tháng 12 2018

Đó là đề ôn của mình mà