Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2 + 22 + 23 + 24 + ... + 258 + 259 + 260
A = (2 + 22 + 23 + 24) + ... + (257 + 258 + 259 + 260)
A = (2.1 + 2.2 + 2.2.2 + 2.2.2.2) + ... + (257.1 + 257.2 + 257.2.2 + 257.2.2.2)
A = 2.(1 + 2 + 4 + 8) + ... + 257.(1 + 2 + 4 + 8)
A = 2.15 + ... + 257.15
A = 15.(2 + 25 + ... + 257) chia hết cho 15
=> A chia hết cho 15
làm đến bước chia hết cho 15 của khoi ly truong thì bạn làm tiếp là:
do A chia hết cho 15 => A chia hết cho 5 và 3
a) A = 2 + 22 + ... + 260
A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 259 + 260 )
A = 2(1+2) + 23(1+2) + ... + 259(1+2)
A = 3.(2+23+...+259) chia hết cho 3
b) A = 2 + 22 + ... + 260
A = ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + ... + ( 257 + 258 + 259 + 260 )
A = 2(1+2+22+23) + 25(1+2+22+23) + ... + 257(1+2+22+23)
A = 15.(2+25+...+257) chia hết cho 15
a) A = 2 + 2^2 + ... + 2^58 + 2^59 + 2^60
A = 2 ( 2 + 1 ) + 2^3 ( 2 + 1 ) + ... + 2^59 ( 2 + 1)
A = 3 .2 + 3.2^3 + ... + 3.2^59
A = 3 ( 2 + 2^3 + ... + 2^59 ) luôn chia hết cho 3
Ta có A = 2+22 + 23 + .....+ 259 + 260
= ( 2+ 22 + 23) +....+ (258 + 259 + 260)
= 2(1+2+4) +....+ 258( 1+2+4)
= 2 .7+24.7 +....+ 258 . 7
= 7( 2+24 + ....+ 258)
=> A chia hết cho 7
a) A = 2 + 22 + 23 + 24 + ... + 259 + 260
A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 259 + 260 )
A = 2 ( 1 + 2 ) + 23 ( 1 + 2 ) + ... + 259 ( 1 + 2 )
A = 3 ( 2 + 23 + ... + 259 )
A chia hết cho 3 ( đpcm )
b) A = 2 + 22 + 23 + 24 + ... + 259 + 260
A = ( 2 + 22 + 23 ) + ... + ( 258 + 259 + 260 )
A = 2 ( 1 + 2 + 22 ) + ... + 258 ( 1 + 2 + 22 )
A = 7 ( 2 + ... + 258 )
A chia hết cho 7 ( đpcm )
A=2.(1+2)+..........+2^59.(1+2)
A=2.3+.........+2^59.3
A=3.(2+....+2^59) chia hết cho 3
Vậy suy ra A chia hết cho 3
A=2.(1+2+2^2)+........+2^58.(1+2+2^2)
A=2.7+..........+2^58.7
A=7.(2+.....+2^58) chia hết cho 7
Vậy A chia hết cho 7
A=2.(1+2+2^2+2^3)+.........+2^57.(1+2+2^2+2^3)
A=2.15+...........+2^57.15
A=15.(2+2^57) chia hết cho 15
Vậy A chia hết cho 15
A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)...+(2^57+2^58+2^59+2^60)
=2.(1+2+2^2+2^3)+2^5.(1+2+2^2+2^3)+..+2^57(1+2+2^2+2^3)
=2.15+2^5.15+...+2^57.15
=15(2+2^4+...+2^58)
Vì A=15.(2+2^4+...+2^58) nên A chia het cho 15
****
CHIA HẾT CHO 7 THÌ GỘP ( 2 + 22 + 23 ) + ( 24 + 25 +26 )...........
CHIA HẾT CHO 15 TƯƠNG TỰ..........
\(a,A=7^{15}+7^{16}+7^{17}\)
\(A=7^{15}\left(1+7+7^2\right)\)
\(A=7^{15}.57\)
Ta có :
\(A=7^{15}.57⋮57\)
\(\Rightarrow A⋮57\)
\(b,B=2+2^2+2^3+....+2^{60}\)
\(B=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(B=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(B=2.7+...+2^{58}.7\)
\(B=7\left(2+2^4+....+2^{58}\right)\)
Ta có :
\(B=7\left(2+2^4+....+2^{58}\right)⋮7\)
\(\Rightarrow B⋮7\)
b) A=(2+22+23)+(24+25+26)+...+(258+259+260)
=>A=2(1+2+22)+24(1+2+22)+...+258(1+2+22)
=>A=7(2+24+...+258)\(⋮\)7
a) Nhóm 2 số vào 1 nhóm rồi giải như trên.
c) Nhóm 4 số vào 1 nhóm rồi giải như trên.