K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 8 2023

Lời giải:

$A=\frac{1}{7^2}+\frac{2}{7^3}+\frac{3}{7^4}+....+\frac{69}{7^{70}}$

$7A=\frac{1}{7}+\frac{2}{7^2}+\frac{3}{7^3}+...+\frac{69}{7^{69}}$

$\Rightarrow 6A=7A-A=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{69}}-\frac{69}{7^{70}}$

$42A=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{68}}-\frac{69}{7^{69}}$

$\Rightarrow 36A=42A-6A=1-\frac{69}{7^{69}}+\frac{69}{7^{70}}<1$

$\Rightarrow A< \frac{1}{36}$

19 tháng 6 2024

A=721+732+743+....+77069

7𝐴=17+272+373+...+697697A=71+722+733+...+76969

⇒6𝐴=7𝐴−𝐴=17+172+173+...+1769−697706A=7AA=71+721+731+...+769177069

42𝐴=1+17+172+...+1768−6976942A=1+71+721+...+768176969

⇒36𝐴=42𝐴−6𝐴=1−69769+69770<136A=42A6A=176969+77069<1

⇒𝐴<136A<361
 

18 tháng 3 2022

`Answer:`

1. \(S=\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}\)

\(\Rightarrow S=\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+...+\frac{1}{80}\right)\)

\(\Rightarrow S>\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{80}+...+\frac{1}{80}\right)\)

\(\Rightarrow S>20.\frac{1}{60}+20.\frac{1}{80}\)

\(\Rightarrow S>\frac{1}{3}+\frac{1}{4}\)

\(\Rightarrow S>\frac{7}{12}\)

2. \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}\)

Ta có:

 \(2^2< 1.2\Rightarrow\frac{1}{2^2}< \frac{1}{1.2}\)

\(3^2< 2.3\Rightarrow\frac{1}{3^2}< \frac{1}{2.3}\)

\(4^2< 3.4\Rightarrow\frac{1}{4^2}< \frac{1}{3.4}\)

...

\(2009^2< 2008.2009\Rightarrow\frac{1}{2009^2}< \frac{1}{2008.2009}\)

\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2008.2009}\)

\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)

\(\Rightarrow S< 1-\frac{1}{2009}< 1\)

\(\Rightarrow S< 1\)

3. \(\frac{3}{5.8}+\frac{11}{8.19}+\frac{12}{19.31}+\frac{70}{31.101}+\frac{99}{101.200}\)

\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{101}+\frac{1}{101}-\frac{1}{200}\)

\(=\frac{1}{5}-\frac{1}{200}\)

\(=\frac{39}{200}\)

23 tháng 4 2017

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\) < 1

\(S=3\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{40.43}+\frac{1}{43.46}\right)\)

\(S=3.\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\right)\)

\(\Rightarrow S=1-\frac{1}{46}\Rightarrow S< 1\left(đpcm\right)\)

23 tháng 4 2017

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)

\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(1-\frac{1}{46}< 1\)

\(\Rightarrow S< 1\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
31 tháng 10 2024

Lời giải:
$S=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{(n+3)-n}{n(n+3)}$

$=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}$

$=1-\frac{1}{n+3}<1$

AH
Akai Haruma
Giáo viên
22 tháng 4 2023

Lời giải:
$S=\frac{1}{7^2}+\frac{2}{7^3}+\frac{3}{7^4}+...+\frac{69}{7^{70}}$

$7S=\frac{1}{7}+\frac{2}{7^2}+\frac{3}{7^3}+...+\frac{69}{7^{69}}$

$6S=7S-S=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{69}}-\frac{69}{7^{70}}$

$42S=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{68}}-\frac{69}{7^{69}}$

$\Rightarrow 42S-6S=(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{68}}-\frac{69}{7^{69}})-(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{69}}-\frac{69}{7^{70}})$

$\Rightarrow 36S=1-\frac{69}{7^{69}}-\frac{1}{7^{69}}+\frac{69}{7^{70}}$

Hay $36S=1-\frac{69.7-7-69}{7^{70}}=1-\frac{407}{7^{70}}$

$\Rightarrow S=\frac{1}{36}(1-\frac{407}{7^{70}})$

24 tháng 1 2017

Bài 1:

\(A=7+7^3+7^5+...+7^{1999}\)

\(\Rightarrow A=\left(7+7^3\right)+\left(7^5+7^7\right)+...+\left(7^{1997}+7^{1999}\right)\)

\(\Rightarrow A=\left(7+343\right)+7^4\left(7+7^3\right)+...+7^{1996}\left(7+7^3\right)\)

\(\Rightarrow A=350+7^4.350+...+7^{1996}.350\)

\(\Rightarrow A=\left(1+7^4+...+7^{1996}\right).350⋮35\)

\(\Rightarrow A⋮35\left(đpcm\right)\)

b2:

a) \(S=1+3+3^2+...+3^{49}\)

\(\Rightarrow S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{48}+3^{49}\right)\)

\(\Rightarrow S=\left(1+3\right)+3^2\left(1+3\right)+...+3^{48}\left(1+3\right)\)

\(\Rightarrow S=4+3^2.4+...+3^{48}.4\)

\(\Rightarrow S=\left(1+3^2+...+3^{48}\right).4⋮4\)

\(\Rightarrow S⋮4\left(đpcm\right)\)

c) \(S=1+3+3^2+...+3^{49}\)

\(\Rightarrow3S=3+3^2+3^3+...+3^{50}\)

\(\Rightarrow3S-S=\left(3+3^2+3^3+...+3^{50}\right)-\left(1+3+3^2+...+3^{49}\right)\)

\(\Rightarrow2S=3^{50}-1\)

\(\Rightarrow S=\frac{3^{50}-1}{2}\left(đpcm\right)\)

24 tháng 1 2017

Giúp mình câu b bài 2 luôn được không?