Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đầu bài ta có:
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}+\frac{1}{2015}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1007}\right)\)
\(=\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2015}\)
\(\Rightarrow S=P\)
Vậy ( S - P )2016 = 02016 = 0
Áp dụng công thức:
1 + 23 + 33 + ... + n3 = (1 + 2 + 3 + ... + n)2 ta có
A = 1 + 23 + 33 + ... + 20153 = (1 + 2 + 3 + ... + 2015)2
A = [(2015+1).2015:2]2
A = ( \(\dfrac{2016.2015}{2}\))2
A = (1008. 2015)2
A = 20311202
S = (-3)0 + (-3)1 + (-3)2 + ... + (-3)2015
=> 3S = (-3)1 + (-3)2 + (-3)3 + ... + (-3)2016
=> 3S + S = [(-3)1 + (-3)2 + ... + (-3)2016] + [(-3)0 + (-3)1 + ... + (-3)2015]
=> 4S = (-3)2016 + (-3)0
=> S = \(\frac{\left(-3\right)^{2016}+\left(-3\right)^0}{4}\)
Ta có :
\(S=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2-1}\right)...\left(\dfrac{1}{2016^2-1}\right)\)
\(S=\left(\dfrac{1.3}{2^2}\right)\left(\dfrac{2.4}{3^2}\right)...\left(\dfrac{2015.2017}{2016^2}\right)\)
\(S=\dfrac{1.3.2.4....2015.2017}{2^2.3^2....2016^2}\)
\(S=\dfrac{1.2017}{2.2016}=\dfrac{2017}{4032}\)
⇒ S > -1/2