Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ahihi
Nhón ba số đầu với nhau cứ thế cho đến hết
(1+3+3^2)+...+(3^2016+3^2017+3^2018)
=13+...+3^2016(1+3+3^2)
=13+...+3^2016x13
=13(1+...+3^2016)
vì 13 chia hết cho 13 =>13 nhân (1+...+3^2016) chia hết cho 13
Chuẩn không nhớ
\(S=1+3^1+3^2+3^3+...+3^{2016}+3^{2017}+3^{2018}.\)
\(S=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{2016}+3^{2017}+3^{2018}\right)\)
\(S=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{2016}\left(1+3+3^2\right)\)
\(S=13+3^3.13+...+3^{2016}.13\)
\(S=13\left(3^3+...+3^{2016}\right)⋮13\left(đpcm\right)\)
Hok tốt
S=1-3+32-33+.....+398-399
=(1-3+32-33)+(34-35+36-37)+....+(396-397+398-399)
= -20+34(1-3+32-33)+....+396(1-3+32-33)
= -20+34*(-20)+....+396*(-20)
= -20*(1+34+....+396)chia hết cho -20
nên S chia hết cho -20
Vậy S chia hết cho -20
Cho S= 1-3+32-33+...+398-399
a, Chứng minh S là bội của 20
b, Tính S, từ đó suy ra 3100chia cho 4 dư 1
tổng s có 100 số hạng, nhóm thành 25 nhóm mỗi nhóm có 4 số hạng, có tổng chia hết cho 20
sai đề , ai thấy sai đề tick mk nha