K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2016

a) Ta có:
\(S=2+2^3+2^5+...+2^{59}\)

\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)\)

\(S=2.\left(1+2^2\right)+2^3.\left(1+2^2\right)+...+2^{57}.\left(1+2^2\right)\)

\(S=\left(2+2^3+2^5+...+2^{57}\right).5⋮5\)

Vậy \(S⋮5\)

28 tháng 8 2016

a) Ta có:

\(S=2+2^3+2^5+...+2^{99}\)

\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)

\(S=2\left(1+2^2\right)+2^3\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)

\(S=2.5+2^3.5+...+2^{97}.5\)

\(S=\left(2+2^3+...+2^{97}\right).5⋮5\)

\(\Rightarrow S⋮5\)

 

1 tháng 9 2016

1) S = 1 + 2 + 22 + ... + 2100 (có 100 số; 100 chia hết cho 2)

S = (1 + 2) + (22 + 23) + ... + (299 + 2100)

S = 3 + 2.(1 + 2) + ... + 299.(1 + 2)

S = 3 + 2.3 + ... + 299.3

S = 3.(1 + 2 + ... + 299) chia hết cho 3 (đpcm)

2) Cách 1: là nhân S với 2 r` tìm ra S = 2100 - 1 và tìm ra c/s tận cùng của S là 5, chia hết cho 5

Cách 2: nhóm 4 số và lm như trên

C) Để thừa ra số 1 đầu tiên, nhóm 3 số típ theo lại, như thế (lm như câu 1)

KQ: S chia 7 dư 1

24 tháng 12 2016

1) Gọi số đề bài cho là aab (a khác 0; a;b là các chữ số)

Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 mà aab chia hết cho 3 nên a + a + b = 2a + b chia hết cho 3 (1)

Vì aab chia hết cho 4 nên ab = 8a + 2a + b chia hết cho 4

Mà 8a chia hết cho 4 nên 2a + b chia hết cho 4 (2)

Từ (1) và (2), do (3;4)=1 nên 2a + b chia hết cho 12

=> đpcm

3) Do (7;3)=1 nên (7n;3)=1

=> 7n chia 3 dư 1 hoặc 2

+ Nếu 7n chia 3 dư 1 thì 7n - 1 chia hết cho 3

=> (7n + 1)(7n - 1) chia hết cho 3

+ Nếu 7n chia 3 dư 2 thì 7n + 1 chia hết cho 3

=> (7n + 1)(7n - 1) chia hết cho 3

Vậy ta có đpcm

24 tháng 12 2016

mình chỉ cần bài 1 và bài 4 thôi nhéhaha

29 tháng 10 2016

A=2+22+23+24+...+212

A=(2+22+23)+(24+25+26)+...+(210+211+212)

A=14.1+23.14+...+29.14

A=14(1+23+...+29)\(⋮\)7

Vậy A\(⋮\)7

30 tháng 10 2016

ucche đăng 1 câu hoài

29 tháng 10 2016

 

A=2+\(2^2\)+\(2^3\)+...+\(2^{12}\)

A= (2 +\(2^2\)+\(2^3\))+...+(\(2^{10}\)+\(2^{11}\)+\(2^{12}\))

A= 2.(1+2+\(2^2\))+...+\(2^{10}\).(1+2+\(2^2\))

A= 2.7 +..... +\(2^{10}\).7

A= 7.(2+...+\(2^{10}\)) \(⋮\)7

\(A=2\left(1+2+2^2\right)+...+2^{10}\left(1+2+2^2\right)=7\cdot\left(2+...+2^{10}\right)⋮7\)

29 tháng 10 2016

\(A=2+2^2+2^3+....+2^{12}\\ \Rightarrow A=\left(2+2^2+2^3\right)+.....+\left(2^{10}+2^{11}+2^{12}\right)\\ \Rightarrow A=2.\left(1+2+2^2\right)+....+2^{10}\left(1+2+2^2\right)\)

\(\Rightarrow A=2.7+....+2^{10}.7\\ \Rightarrow A=7\left(2+....+2^{10}\right)⋮7\)

Đề sai rồi bạn