K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Đề sai. Bạn cho $a=-1; b=2021; c=2$ thì để có đpcm thì pt:

$-x^2+2021x+2=P(2021)P(2022)=-4020$ có nghiệm nguyên.

Mà dễ thấy pt này không có nghiệm nguyên nên đề sai.

NV
25 tháng 3 2022

Xét \(f\left[f\left(x\right)+x\right]=\left[f\left(x\right)+x\right]^2+m\left[f\left(x\right)+x\right]+n\)

\(=\left(x^2+mx+n+x\right)^2+m\left(x^2+mx+n+x\right)+n\)

\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+x^2+m\left(x^2+mx+n\right)+mx+n\)

\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+m\left(x^2+mx+n\right)+\left(x^2+mx+n\right)\)

\(=\left(x^2+mx+n\right)\left(x^2+mx+n+2x+m+1\right)\)

\(=\left(x^2+mx+n\right)\left[\left(x+1\right)^2+m\left(x+1\right)+n\right]\)

\(=f\left(x\right).f\left(x+1\right)\)

Thay \(x=2021\)

\(\Rightarrow f\left[f\left(2021\right)+2021\right]=f\left(2021\right).f\left(2022\right)\)

Đặt \(f\left(2021\right)+2021=k\)

Do \(f\left(x\right)\) có hệ số m;n nguyên \(\Rightarrow k\) nguyên

\(\Rightarrow f\left(k\right)=f\left(2021\right).f\left(2022\right)\) với k nguyên 

Hay tồn tại số nguyên k thỏa mãn yêu cầu

Đề thi tham khảo chuyên toán vào 10. Thời gian làm bài: 150 phút.Câu 1:a) Giải phương trình: \(\frac{x^2}{x-1}+\sqrt{x-1}+\frac{\sqrt{x-1}}{x^2}=\frac{x-1}{x^2}+\frac{1}{\sqrt{x-1}}+\frac{x^2}{\sqrt{x-1}}\)b) Giải hệ phương trình: \(\hept{\begin{cases}\frac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\\x+\frac{y}{\sqrt{1+x^2}+x}+y^2=0\end{cases}}\)Câu 2:a) Tìm tất cả các số nguyên dương m,n sao cho \(2^n+n=m!\)b) Cho số tự nhiên \(n\ge2\).Biết rằng với...
Đọc tiếp

Đề thi tham khảo chuyên toán vào 10. Thời gian làm bài: 150 phút.

Câu 1:

a) Giải phương trình: \(\frac{x^2}{x-1}+\sqrt{x-1}+\frac{\sqrt{x-1}}{x^2}=\frac{x-1}{x^2}+\frac{1}{\sqrt{x-1}}+\frac{x^2}{\sqrt{x-1}}\)

b) Giải hệ phương trình: \(\hept{\begin{cases}\frac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\\x+\frac{y}{\sqrt{1+x^2}+x}+y^2=0\end{cases}}\)

Câu 2:

a) Tìm tất cả các số nguyên dương m,n sao cho \(2^n+n=m!\)

b) Cho số tự nhiên \(n\ge2\).Biết rằng với mỗi số tự nhiên \(k\le\sqrt{\frac{n}{3}}\)thì \(k^2+k+n\)là một số nguyên tố. Chứng minh rằng với mỗi số tự nhiên \(k\le n-2\)thì \(k^2+k+n\)là một số nguyên tố.

Câu 3: 

a) Cho \(x\le y\le z\)thỏa mã điểu kiện\(xy+yz+zx=k\)với k là một số nguyên dương lớn hơn 1.

Hỏi bất đẳng thức sau đây đúng hay không: \(xy^2z^3< k+1?\)

b) Cho a,b,c là các số thực dương thỏa mãn \(abc\le1\). Chứng minh rằng:

\(\sqrt{\frac{a^2+b^2}{ab\left(a+b\right)}}+\sqrt{\frac{b^2+c^2}{bc\left(b+c\right)}}+\sqrt{\frac{c^2+a^2}{ca\left(c+a\right)}}\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

Câu 4: Cho đường tròn (O) có đường kính BC, A là điểm nằm ngoài đường tròn (O) sao cho tam giác ABC có 3 góc nhọn. AB cắt đường tròn (O) tại F, AC đường tròn (O) tại E. Gọi H là trực tâm tam giác ABC, N là trung điểm AH, AH cắt BC tại D, NB cắt đường tròn (O) tại điểm thứ hai là M. Gọi K, L lần lượt là giao điểm AH với ME và MC.

a) Chứng minh: E, L, F thẳng hàng 

b) Vẽ đường tròn (OQX) cắt OE tại Y với X,I,Q là giao điểm của đường thẳng qua H song song với ME và OF, NF,MC. Trên tia QY lấy điểm T sao cho QT=MK. Kẻ HT cắt NS tại J. Chứng minh tứ giác NJIH nội tiếp.

Câu 5: Cho m và n là hai số nguyên dương nguyên tố cùng nhau. Chứng minh tồn tại hai số nguyên dương x,y không vượt quá \(\sqrt{m}\) sao cho \(n^2x^2-y^2\)chia hết cho m.

Hết!

 

2
20 tháng 4 2019

Đây là đề của trường nào vậy bạn?

21 tháng 4 2019

Đề khó vcl ...

19 tháng 11 2016

câu 2

Ta có:                                                                                                                                                                                     P(0)=d =>d chia hết cho 5  (1)                                                                                                                                                P(1)=a+b+c+d =>a+b+c chia hết cho 5  (2)                                                                                                                               P(-1)=-a+b-c+d chia hết cho 5                                                                                                                                              Cộng (1) với (2) ta có: 2b+2d chia hết cho 5                                                                                                                               Mà d chia hết cho 5 =>2d chia hết cho 5                                                                                                                                  =>2b chia hết cho 5 =>b chia hết cho 5                                                                                                                          P(2)=8a+4b+2c+d chia hết cho 5                                                                                                                                       =>8a+2c chia hết cho 5 ( vì 4b+d chia hết cho 5)                                                                                                                      =>6a+2a+2c chia hết cho 5                                                                                                                                         =>6a+2(a+c) chia hết cho 5 Mà a+c chia hết cho 5 (vì a+b+c chia hết cho 5, b chia hết cho 5)                                                          =>6a chia hết cho 5                                                                                                                                                                =>a chia hết cho 5 =>c chia hết cho 5                                                                                                                                                                  Vậy a,b,c chia hết cho 5  cho mình 1tk nhé

19 tháng 11 2016

1b)

Đặt 2014+n2=m2(m∈Z∈Z,m>n)

<=>m2-n2=2014<=>(m+n)(m-n)=2014

Nhận thấy:m và n phải cùng chẵn hoặc cùng lẻ 

Suy ra m+n và m-n đều chẵn,m+n>m-n

Mà 2014=2.19.53=>m+n và m-n không cùng chẵn

=>không có giá trị nào thoả mãn

tk mình nhé

NV
15 tháng 7 2020

\(P\left(9\right)-P\left(6\right)=2021\)

\(\Leftrightarrow81a+9b+c-36a-6b-c=2021\)

\(\Leftrightarrow45a+3b=2021\)

\(P\left(10\right)-P\left(7\right)=100a+10b+c-47a-7b-c\)

\(=53a+3b=8a+\left(45a+3b\right)=8a+2021\)

\(8a\) chẵn, 2021 lẻ \(\Rightarrow P\left(10\right)-P\left(7\right)\) lẻ

10 tháng 9 2015

Hi, thầy xin lỗi vì lúc chiều nhìn qua loa tưởng em thiếu giả thiết, không nhìn kĩ là em đã viết \(a,b,c\) nguyên. Tuy nhiên tác giả đã sai lầm khi chọn số \(\frac{1}{1000}\) vì nó làm bài toán này hơi tầm thường: Thực vậy, ta có thể chọn được giá trị của \(a,b,c\), ví dụ ta lấy \(a=14,b=-5,c=-4\to\left|a+b\sqrt{2}+c\sqrt{3}\right|=14-5\sqrt{2}-4\sqrt{3}<0.0008=\frac{8}{10^4}<\frac{1}{10^3}.\)