Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, khi m=1 phương trình trở thành:
x^2-4x+2=0
giải pt tìm đc x1= 2+v2, x2=2-v2
2, tính đc đenta' =m^2+1 luôn luôn lớn hơn 0
vậy.....
3, biện luận để giải pt có 2 nghiệm nguyên dương:
2m+2>0 và 2m>0
tương đương: m>0
theo gt có: x1^2+x^2=12
tương đương (x1+x2)^2-2x1x2=12
tưng đương 4(m+1)^2-4m=12
tương đương m^2+m-2 =0
giải pt được m=1(tm), m=-2( loại)
hok tốt
GIỜ BÀI NÀY KHÔNG CÒN GIAO LƯU NỮA
(1) (M+1)^2 -2m=m^2 +1 >=0 moi m => (1) được c/m
(2) x1^2 +x^2 =12
=> 4(m+1)^2 -4m =12
m^2+m+1=3 => m=1, -2
=> m
(3) từ (2) GTNN A=3/4 khi x=-1/2
có thể sai đừng tin
cho phương trình x2−(m+2)x+3m−3=0 với x là ẩn, m là tham số
a,Với m = -1 thì pt trở thành
\(x^2-\left(-1+2\right)x+3\left(-1\right)-3=0\)
\(\Leftrightarrow x^2-x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
b, Vì pt có 2 nghiệm x1 ; x2 là độ dài 2 cạnh góc vuông nên x1 ; x2 > 0 hay pt có 2 nghiệm dương
Tức là \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(m+2\right)^2-4\left(3m-3\right)>0\\m+2>0\\3m-3>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m^2+4m+4-12m+12>0\\m>1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m^2-8m+16>0\\m>1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m-4\right)^2>0\\m>1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m>1\\m\ne4\end{cases}}\)
Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=m+2\\x_1x_2=3m-3\end{cases}}\)
Vì x1 ; x2 là độ dài 2 cạnh góc vuông của tam giác vuông có độ dài cạnh huyền bằng 5
\(\Rightarrow x_1^2+x_2^2=25\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\)
\(\Leftrightarrow\left(m+2\right)^2-2\left(3m-3\right)=25\)
\(\Leftrightarrow m^2+4m+4-6m+6=25\)
\(\Leftrightarrow m^2-2m-15=0\)
\(\Leftrightarrow\left(m-5\right)\left(m+3\right)=0\)
\(\Leftrightarrow m=5\left(Do\text{ }\hept{\begin{cases}m>1\\m\ne4\end{cases}}\right)\)
Vậy m = 5
Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=mx-m+1\)\(\Leftrightarrow x^2-mx+m-1=0\)
Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta=\left(-m\right)^2-4.1\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>0\)\(\Leftrightarrow m-2\ne0\)\(\Leftrightarrow m\ne2\)
Khi đó \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)(hệ thức Vi-ét)
Độ dài cạnh huyền của tam giác vuông có 2 cgv là \(x_1,x_2\)là \(\sqrt{x_1^2+x_2^2}=\sqrt{\left(x_1+x_2\right)^2-2x_1x_2}=\sqrt{m^2-2\left(m-1\right)}=\sqrt{m^2-2m+2}\)
Ta có \(x_1x_2=\frac{1}{\sqrt{5}}\sqrt{m^2-2m+2}\)hệ thức lượng trong tam giác vuông.
\(\Leftrightarrow m-1=\frac{1}{\sqrt{5}}\sqrt{m^2-2m+2}\)\(\Leftrightarrow\frac{m-1}{\sqrt{m^2-2m+2}}=\frac{1}{\sqrt{5}}\)\(\Leftrightarrow\sqrt{\frac{m^2-2m+1}{m^2-2m+2}}=\sqrt{\frac{1}{5}}\)\(\Leftrightarrow\frac{m^2-2m+1}{m^2-2m+2}=\frac{1}{5}\)\(\Leftrightarrow5m^2-10m+5=m^2-2m+2\)\(\Leftrightarrow4m^2-8m+3=0\)
\(\Delta_1=\left(-8\right)^2-4.4.3=16>0\)
\(\Rightarrow\orbr{\begin{cases}m_1=\frac{-\left(-8\right)+\sqrt{16}}{2.4}=\frac{3}{2}\\m_2=\frac{-\left(-8\right)-\sqrt{16}}{2.4}=\frac{1}{2}\end{cases}}\)
Vậy để [...] thì \(\orbr{\begin{cases}m=\frac{3}{2}\\m=\frac{1}{2}\end{cases}}\)
Bài 1. Phương trình \(x^2-\left(m+5\right)x+3m+6=0\)
a. \(\Delta=\left(m+5\right)^2-4\left(3m+6\right)=m^2-2m+1=\left(m+1\right)^2\ge0\)
Vậy phương trình luôn có nghiệm.
b. Gọi các nghiệm của phương trình là \(x_1;x_2\). Để các nghiệm của phương trình là độ dài của các cạnh góc vuông của tam giác vuông có độ dài cạnh huyền là 5 thì \(x_1^2+x_2^2=25\)
Theo Viet ta có \(\hept{\begin{cases}x_1+x_2=m+5\\x_1.x_2=3m+6\end{cases}}\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(m+5\right)^2-2\left(3m+6\right)=m^2+4m+13=25\)
\(\Rightarrow m^2+4m-12=0\Rightarrow\orbr{\begin{cases}m=2\\m=-6\end{cases}}\)
Bài 2.
a. Để hai đồ thị có 1 điểm chung thì phương trình hoành độ giao điểm có 1 nghiệm duy nhất.
Xét phương trình hoành độ giao điểm: \(-x^2=4x-m\Leftrightarrow x^2+4x-m=0\)
Để phương trình có 1 nghiệm duy nhất thì \(\Delta'=0\Leftrightarrow2^2+m=0\Leftrightarrow m=-4\)
Bài 3. Phương trình \(x^2-5x+3m+1=0\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\Leftrightarrow\left(-5\right)^2-4\left(3m+1\right)=21-12m>0\Leftrightarrow m< \frac{7}{4}\)
Theo Viet \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=3m+1\end{cases}}\)
Vậy \(\left|x_1^2-x_2^2\right|=15\Leftrightarrow\left(x_1+x_2\right)^2\left(x_1-x_2\right)^2=225\Leftrightarrow\left(x_1+x_2\right)^2\left[\left(x_1+x_2\right)^2-4x_1x_2\right]=225\)
\(\Leftrightarrow25\left[25-4\left(3m+1\right)\right]=225\Leftrightarrow21-12m=9\Leftrightarrow m=1\left(tmđk\right)\)
Vậy m = 1.
Chú ý nhớ kĩ định lý Viet nhé, đây là một phần quan trọng đó em.
*đặc phương trình x2-(m+5)x +3m+6=0 là pt (1)
pt(1)có 2 nghiệm x1,x2\(\Leftrightarrow\Delta\) > 0 \(\Leftrightarrow\) \([\)-(m+5)\(]\)2-4.1.(3m+6) > 0
\(\Leftrightarrow\) m2+10m+25-12m-24>0\(\Leftrightarrow\)m2-2m+1>0
\(\Leftrightarrow\)(m-1)2>0\(\Leftrightarrow\)m-1\(\ne\)0\(\Leftrightarrow\)m\(\ne\)1
*có 2 nghiệm là độ dài 2 cạnh góc vuông \(\Leftrightarrow\)phải có 2 nghiệm dương
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\Delta>0\\P>0\\S>0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne1\\m+5>0\\3m+6>0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne1\\m>-5\\m>-2\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}m\ne1\\m>-2\end{matrix}\right.\)
*x12+x22=25\(\Leftrightarrow\) (x1+x2)2-2x1x2=25(2)
áp dụng hệ thức vi ét cho phương trình (1) ta có:x1+x2=m+5 ; x1x2=3m+6
thay vào pt (2) \(\Leftrightarrow\) (m+5)2-2(3m+6)=25
\(\Leftrightarrow\) m2+10m+25-6m-12=25\(\Leftrightarrow\)m2+4m-12=0
\(\Delta\)'=22-1(-12)=4+12=16>o;\(\sqrt{\Delta'}\)=4
\(\Rightarrow\) pt có 2 nghiệm phân biệt :m1=-2+4=2(tmđk)
m2=-2-4=-6(loại)
vậy m=2 thì 2 nghiệm của pt là độ dài 2 cạnh góc vuông có cạnh huyền bằng 5 .
day la cau cuoi de kiem tra 1 tiet 9 danh cho 9A4,9A5.