K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2019

\(\Delta=m^2+8m+16-16m=m^2-8m+16=\left(m-4\right)^2\ge0.\)

Vậy pt luôn có 2 nghiệm phân biệt.

Theo vi ét : \(\hept{\begin{cases}x_1+x_2=m+4\\x_1.x_2=4m\end{cases}}\)

\(x_1^2+\left(m+4\right)x_2=16\)

\(\Leftrightarrow x_1^2+\left(x_1+x_2\right)x_2=16\Leftrightarrow x_1^2+x_2^2+x_1x_2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=16\)

\(\Leftrightarrow\left(m+4\right)^2-4m=16\Leftrightarrow m^2+8m+16-4m=16\Leftrightarrow m^2+4m=0\)

\(\Leftrightarrow m\left(m+4\right)=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=-4\end{cases}}\)

Cho tớ sửa đề làm cho nó dễ nhé == chứ x2^2 mà x1 thôi thì tớ ko có bt lm 

Ta có : \(x^2+\left(-m+2\right)x-6=0\left(a=1;b=-m+2;c=-6\right)\)

Cái chỗ này là mk đổi dấu cho thuận một tí ko ko xét b đc )): lại 1 bước đi vạn dặm đau thì toang =)) 

\(\Delta=\left(-m+2\right)^2-4\left(-6\right)=m^2+4+24=m^2+28\) Vậy : Pt luôn có 2 nghiệm \(\forall x\)

Áp dụng hệ thức Vi et ta có : \(x_1+x_2=m-2;x_1x_2=-6\)

Theo bài ra ta có : \(x_2^2-x_1x_2+\left(m-2\right)x_1^2=16\)

\(\Leftrightarrow\left(x_1^2x_2^2\right)-x_1x_2+\left(m-2\right)=16\)

\(\Leftrightarrow\left(x_1x_2\right)^2-x_1x_2+m-2=16\)

\(\Leftrightarrow\left(-6\right)^2+6+m-2=16\)

\(\Leftrightarrow36+6+m-2=16\Leftrightarrow40+m-16=0\Leftrightarrow m=-24\)

26 tháng 4 2021

\(x^2-2mx+2m-3=0\)

\(\Delta^,_x=m^2-2m+3\)

\(=\left(m-1\right)^2+2\ge2>0;\forall m\)

\(\Rightarrow\)pt luôn có 2 nghiệm phân biệt \(x_1,x_2\)

Theo hệ thức Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=2m-3\end{cases}}\)

Ta có : \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)

\(\Leftrightarrow1-x_1^2-x_2^2+x_1^2x_2^2=-4\)

\(\Leftrightarrow1-\left(x_1^2+x_2^2\right)+\left(x_1x_2\right)^2=-4\)

\(\Leftrightarrow1-\left(x_1+x_2\right)^2+2x_1x_2+\left(x_1x_2\right)^2=-4\)

\(\Leftrightarrow1-4m^2+4m-6+\left(2m-3\right)^2=-4\)

\(\Leftrightarrow-8m+4=-4\)

\(\Leftrightarrow m=1\)

Vậy m=1 thì pt có 2 nghiệm phân biệt \(x_1,x_2\)thỏa mãn hệ thức  \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)

24 tháng 3 2020

Để pt (1) có 2 nghiệm phân biệt thì \(\Delta=m^2+16>0\)với \(\forall m\)suy ra pt (1) có 2 nghiệm phân biệt

Theo hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=-4\end{cases}}\)

Khi đó \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=10\Leftrightarrow x_1^2+x_2^2+2\left(x_1+x_2\right)+2=10\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2m=8\Leftrightarrow m^2+2m+8=8\Leftrightarrow m\left(m+2\right)=0\Leftrightarrow\hept{\begin{cases}m=0\\m=-2\end{cases}}\)

Vậy ...

4 tháng 4 2020
https://i.imgur.com/Gu2x8wy.jpg
27 tháng 2 2019

a) \(\Delta'=1^2-m^2+3m=-\left(m^2-3m-1\right)\)

PT có 2 nghiệm PB \(\Leftrightarrow-\left(m^2-3m-1\right)>0\)

\(m^2-3m-1< 0\Leftrightarrow\left(m-\dfrac{3}{2}\right)^2>\dfrac{15}{4}\)

\(m-\dfrac{3}{2}>\dfrac{\sqrt{15}}{2}\Rightarrow m>\dfrac{\sqrt{15}+3}{2}\)

b) Vi-ét

\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m^2-3m\end{matrix}\right.\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4-2m^2+6m\)

\(\Rightarrow-2m^2+6m+4=8\)

Tính m ra

c) \(x^2_1+x^2_2=-2m^2+6m+4\)

\(=-2\left(m^2-3m-2\right)\)

\(=-2\left(m-\dfrac{3}{2}\right)^2-\dfrac{17}{4}\)

Lập luận để tìm ra GTNN