K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2017

1) \(\Delta\)' = \(m^2-m+6\) = \(\left(m-\dfrac{1}{2}\right)^2+\dfrac{23}{4}\ge\dfrac{23}{4}>0\forall m\)

\(\Rightarrow\) pt có 2 nghiệm phân biệt \(\forall m\)

ta có : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=15\)

áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-6\end{matrix}\right.\)

thay ta có : \(4m^2-2m+12=15\) \(\Leftrightarrow\) \(4m^2-2m-3=0\)

giải phương trình ta có : \(\left\{{}\begin{matrix}m=\dfrac{1+\sqrt{13}}{4}\\m=\dfrac{1-\sqrt{13}}{4}\end{matrix}\right.\)

vậy : \(m=\dfrac{1+\sqrt{13}}{4};m=\dfrac{1-\sqrt{13}}{4}\) là thỏa mãng đk bài toán

19 tháng 6 2017

2) ta có : \(\left|x_1-x_2\right|=\sqrt{20}\) \(\Leftrightarrow\) \(\left(x_1-x_2\right)^2=20\) \(\Leftrightarrow\) \(\left(x_1+x_2\right)^2-4x_1x_2=20\)

áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-6\end{matrix}\right.\)

thay vào ta có : \(4m^2-4m+24=20\) \(\Leftrightarrow\) \(4m^2-4m+4=0\) (vô nghiệm)

\(\Rightarrow\) không có \(x\) thỏa mãng

8 tháng 4 2020

8.4/ Để phương trình có 2 nghiệm phân biệt thì \(\Delta'=\left(m+5\right)^2-\left(m^2+6\right)=10m+19>0\Leftrightarrow x>-\frac{19}{10}\)

Theo định lý viete, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+5\right)\\x_1x_2=m^2+6>0\forall x\in R\end{matrix}\right.\)

Ta có: \(\left|x_1\right|+\left|x_2\right|=16\Leftrightarrow x_1^2+x^2_2+2\left|x_1x_2\right|=256\Leftrightarrow\left(x_1+x_2\right)=256\)

\(\Leftrightarrow-2\left(m+5\right)=256\Leftrightarrow m+5=-128\Leftrightarrow m=-133\) (không t/m)

Vậy khôn tồn tại m thõa mãn ycbt

8 tháng 4 2020

8.3/ Để phương trình có 2 nghiệm phân biệt thì \(\Delta'=\left(m-4\right)^2-\left(m^2+7\right)=-8m+9>0\) \(\Leftrightarrow m< \frac{9}{8}\)

Theo định lý \(viete:\left\{{}\begin{matrix}x_1+x_2=2\left(m+4\right)\\x_1x_2=m^2+7>0\forall x\in R\end{matrix}\right.\)

Ta có: \(\left|x_1\right|+\left|x_2\right|=12\Leftrightarrow x_1^2+x^2_2+2\left|x_1x_2\right|=144\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2=\left(x_1+x_2\right)=144\)

\(\Leftrightarrow2\left(m+4\right)=144\Leftrightarrow m+4=72\Leftrightarrow m=68\) (T/m)

KL: ...........

30 tháng 4 2018

Δ= 4m^2 - 4m^2 + 4m + 24 = 4m + 24

để pt có 2 nghiệm thì Δ ≥ 0 => 4m + 24 ≥ 0 <=> m ≥ -6

viet: \(\left\{{}\begin{matrix}x1+x2=2m\\x1\cdot x2=m^2-m+6\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}\left(x1+x2\right)^2=4m^2\\2x1\cdot x2=2m^2-2m+12\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x1^2+x2^2=4m^2-2x1\cdot x2\\2x1\cdot x2=2m^2-2m+12\end{matrix}\right.\)

|x1| + |x2| = 8

<=> (|x1| + |x2|)^2 = 64

<=> x1^2 + x2^2 + 2|x1|*|x2| = 64

<=> 4m^2 - 2m^2+2m-12 + 2m^2-2m+12 = 64

<=> 4m^2 = 64

<=> m = -4; m = 4

8 tháng 5 2017

Để pt có hai nghiệm thì \(\Delta'\ge0\Rightarrow m^2-\left(m^2-m+1\right)\ge0\Rightarrow m-1\ge0\Rightarrow m\ge1.\)

Khi đó theo hệ thức Viet: \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m+1\end{cases}}\)

Vậy thì \(x_1^2+2mx_2=x_1^2+\left(x_1+x_2\right)x_2=9\)

\(\Rightarrow x_1^2+x_1.x_2+x_2^2=9\Rightarrow\left(x_1+x_2\right)^2-x_1x_2=9\)

\(\Rightarrow\left(2m\right)^2-m^2+m-1=9\Rightarrow3m^2+m-10=0\)

\(\Rightarrow\orbr{\begin{cases}m=-2\left(l\right)\\m=\frac{5}{3}\left(n\right)\end{cases}}\)

18 tháng 6 2015

a) pt có 2 nghiệm dương <=> \(\Delta\ge0;\int^{x1+x2>0}_{x1.x2>0}\Leftrightarrow4\left(m+1\right)^2-4\left(m-4\right)\ge0;\int^{2m+2>0}_{m-4>0}\Leftrightarrow4m^2+4m+4+16\ge0;\int^{m>-1}_{m>4}\)

=> m>4. (cái kí hiệu ngoặc kia là kí hiệu và nha. tại trên này không có nên dùng tạm cái ý)

b) áp dụng hệ thức vi ét ta có: x1+x2=2m+2; x1.x2=m-4

 \(M=\frac{\left(x1+x2\right)^2-2x1x2}{x1-x1.x2+x2-x1.x2}=\frac{\left(2m+2\right)^2-2\left(m-4\right)}{2m+2-2\left(m-4\right)}=\frac{4m^2+6m+12}{10}=\frac{\left(4m^2+6m+\frac{9}{4}\right)+\frac{39}{4}}{10}=\frac{\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}}{10}\)

ta có: \(\left(2m+\frac{3}{2}\right)^2\ge0\Leftrightarrow\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\Leftrightarrow\frac{\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}}{10}\ge\frac{39}{40}\)=> Min M=39/40 <=>m=-3/4

8 tháng 4 2020

8.1/ Để phương trình có 2 nghiệm phân biệt thì \(\Delta=\left(m-9\right)^2-4.\left(-7\right)=m^2-18m+109>0\Leftrightarrow m\in R\)

Theo định lý viete, ta có: \(\left\{{}\begin{matrix}x_1+x_2=m+9\\x_1x_2=-7< 0\end{matrix}\right.\)

\(\left|x_1\right|-\left|x_2\right|=16\Leftrightarrow x_1^2+x_2^2-2\left|x_1x_2\right|=256\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=256\Leftrightarrow\left(m+9\right)^2=256-2\left(-7\right)-2\left|-7\right|=256\)

\(\Leftrightarrow\left(m+9\right)^2=256\Leftrightarrow\left[{}\begin{matrix}m=7\\m=-25\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}m=7\\m=-25\end{matrix}\right.\)

4 tháng 5 2017

Ta có:\(\Delta\)'=m2-4

Để phương trình có nghiệm thì \(\Delta\)'\(\ge0\)

<=>m2-4 \(\ge0\)

<=>\(m\ge2\)hoặc\(m\le-2\)

Với \(m\ge2\)hoặc\(m\le-2\)thì phương trình có nghiệm,theo hệ thức viét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\)

Ta có:(x1+1)2+(x2+1)2=2

<=>x12+2x1+1+x22+2x2+1-2=0

<=>x12+x22+2(x1+x2)=0

<=>(x1+x2)2-2x1x2+2(x1+x2)=0

Thay x1+x2=2m x1x2=4 ta có:

(2m)2-2.4+2.2m=0

<=>4m2+4m-8=0

<=>(4m2-4m)+(8m-8)=0

<=>(m-1)(4m+8)=0

<=>m-1=0 hoặc 4m+8=0

<=>m=1(L) hoặc m=-2(TM)

Vậy m=-2

27 tháng 2 2019

a) \(\Delta'=1^2-m^2+3m=-\left(m^2-3m-1\right)\)

PT có 2 nghiệm PB \(\Leftrightarrow-\left(m^2-3m-1\right)>0\)

\(m^2-3m-1< 0\Leftrightarrow\left(m-\dfrac{3}{2}\right)^2>\dfrac{15}{4}\)

\(m-\dfrac{3}{2}>\dfrac{\sqrt{15}}{2}\Rightarrow m>\dfrac{\sqrt{15}+3}{2}\)

b) Vi-ét

\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m^2-3m\end{matrix}\right.\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4-2m^2+6m\)

\(\Rightarrow-2m^2+6m+4=8\)

Tính m ra

c) \(x^2_1+x^2_2=-2m^2+6m+4\)

\(=-2\left(m^2-3m-2\right)\)

\(=-2\left(m-\dfrac{3}{2}\right)^2-\dfrac{17}{4}\)

Lập luận để tìm ra GTNN