Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Tìm \(\Delta\)để tìm điều kiện cho phương trình có 2 nghiệm
-Tìm tích \(x_1_{ }x_2=\frac{c}{a}\)để tìm đk cho 2 nghiệm khác 0
- Tìm tổng và tích 2 nghiệm theo định lí Vi-ét
- \(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=\frac{-5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{-5}{2}\)
\(\Leftrightarrow\frac{\left(x1+x2\right)^2}{x1x2}=\frac{-1}{2}\)
Thay tích với tổng vào để tính nhé.Mình bận chỉ hướng dẫn ý chính. Có gì sai sót bỏ qua cho
\(\Delta=m^2+8m+16-16m=m^2-8m+16=\left(m-4\right)^2\ge0.\)
Vậy pt luôn có 2 nghiệm phân biệt.
Theo vi ét : \(\hept{\begin{cases}x_1+x_2=m+4\\x_1.x_2=4m\end{cases}}\)
\(x_1^2+\left(m+4\right)x_2=16\)
\(\Leftrightarrow x_1^2+\left(x_1+x_2\right)x_2=16\Leftrightarrow x_1^2+x_2^2+x_1x_2=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=16\)
\(\Leftrightarrow\left(m+4\right)^2-4m=16\Leftrightarrow m^2+8m+16-4m=16\Leftrightarrow m^2+4m=0\)
\(\Leftrightarrow m\left(m+4\right)=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=-4\end{cases}}\)
a) ( a = 1; b = -2(m+3); c = m^2 + 3 )
\(\Delta=b^2-4ac\)
\(=\left[-2\left(m+3\right)\right]^2-4.1.\left(m^2+3\right)\)
\(=4\left(m^2+6m+9\right)-4m^2-12\)
\(=4m^2+24m+36-4m^2-12\)
\(=24m-24\)
Để pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow24m-24>0\Leftrightarrow m>1\)
b)
* Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2\left(m+3\right)\\P=x_1x_2=\frac{c}{a}=m^2+3\end{cases}}\)
Ta có: \(x_1^2+x_2^2\)
\(=S^2-2P\)
\(=\left[2\left(m+3\right)\right]^2-2.\left(m^2+3\right)\)
\(=4\left(m^2+6m+9\right)-2m^2-6\)
\(=4m^2+24m+36-2m^2-6\)
\(=2m^2+24m+30\)
* \(\frac{1}{x_1}+\frac{1}{x_2}\)
\(=\frac{x_1+x_2}{x_1x_2}\)
\(=\frac{S}{P}\)
\(=\frac{2\left(m+3\right)}{m^2+3}\)
\(=\frac{2m+6}{m^2+3}\)
a, đenta' = m^2+1>0 với mọi m
=>pt luôn có 2 nghiệm phân biệt với mọi m
b, theo viet ta có:
x12+x22=7
<=>(x1+x2)2-2x1x2=7
=>(2m)2+2=7
=>4m2=5
=> m2=5/4
=>m=căn(5)/2 hoặc m=-căn(5)/2
Viết lại đề : \(x^2-2mx+m^2-1=0\left(a=1;b=-2m;c=m^2-1\right)\)( 1 )
a, Thay m = 1 vào pt (1) ta đc
\(x^2-2.1x+1^2-1=0\Leftrightarrow x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
Tương ứng vs : \(\left(2m\right)^2-4\left(m^2-1\right)=4m^2-4m^2+4=4>0\)(EZ>33)
c, Áp dụng hệ thức Vi et ta có : \(x_1+x_2=2m;x_1x_2=m^2-1\)
Theo bài ra ta có : \(x_1+x_2=12\)Thay vào ta đc
\(\Leftrightarrow2m=12\Leftrightarrow m=6\)
\(x^2-2mx+2m-3=0\)
\(\Delta^,_x=m^2-2m+3\)
\(=\left(m-1\right)^2+2\ge2>0;\forall m\)
\(\Rightarrow\)pt luôn có 2 nghiệm phân biệt \(x_1,x_2\)
Theo hệ thức Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=2m-3\end{cases}}\)
Ta có : \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)
\(\Leftrightarrow1-x_1^2-x_2^2+x_1^2x_2^2=-4\)
\(\Leftrightarrow1-\left(x_1^2+x_2^2\right)+\left(x_1x_2\right)^2=-4\)
\(\Leftrightarrow1-\left(x_1+x_2\right)^2+2x_1x_2+\left(x_1x_2\right)^2=-4\)
\(\Leftrightarrow1-4m^2+4m-6+\left(2m-3\right)^2=-4\)
\(\Leftrightarrow-8m+4=-4\)
\(\Leftrightarrow m=1\)
Vậy m=1 thì pt có 2 nghiệm phân biệt \(x_1,x_2\)thỏa mãn hệ thức \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)
Phương trình có 2 nghiệm phân biệt khi và chỉ khi:
\(\Delta'=m^2-\left(m^2-m+1\right)>0\)
\(\Leftrightarrow m-1>0\)
\(\Rightarrow m>1\)
A,pt có 2 no pb
`<=>Delta>0`
`<=>4m^2-4(m^2-m+1)>0`
`<=>4(m-1)>0`
`<=>m-1>0`
`<=>m>1`