Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(a=1;b=-2\left(m-2\right);c=-8\)
Vì ac<0 nên phương trình luôn có hai nghiệm trái dấu với mọi m
b: Theo Vi-et, ta được: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)=2m-4\\x_1x_2=-8\end{matrix}\right.\)
Ta có: \(x_1^3+x_2^3-4x_1-4x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-4\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(2m-4\right)^3-3\cdot\left(2m-4\right)\cdot\left(-8\right)-4\cdot\left(2m-4\right)=0\)
\(\Leftrightarrow\left(2m-4\right)\left[4m^2-16m+16+24-4\right]=0\)
\(\Leftrightarrow\left(2m-4\right)\left(4m^2-16m+36\right)=0\)
\(\Leftrightarrow2m-4=0\)
hay m=2
PT : \(x^2-\left(2m-3\right)x+m^2-3m=0\)
a ) Làm tổng luôn ta chỉ cần thay m = 1 là xong
b ) \(\Delta_{\left(x\right)}=\left(2m-3\right)^2-4\left(m^2-3m\right)=4m^2-12m+9-4m^2+12m=9\)\(>0\forall m\in R\Rightarrowđpcm\)
c ) \(\hept{\begin{cases}x_1=m-3;x_2=m\\m>m-3\forall m\in R\\1< x_1< x_2< 6\end{cases}}\) quay lại a ) m=1 \(\Rightarrow\hept{\begin{cases}x_1=-2\\x_2=1\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=1\\x_2=-2\end{cases}}\)
\(4< m< 6\)
Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
hay \(\left(2m+2\right)^2-4\left(2m+2\right)=4m^2+8m+4-8m-8=4m^2-4>0\)
\(\Leftrightarrow4m^2>4\Leftrightarrow m^2>1\Leftrightarrow\left(m-1\right)\left(m+1\right)>0\Leftrightarrow\hept{\begin{cases}m>1\\m>-1\end{cases}\Leftrightarrow m>1}\)
Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2m-2\\x_1x_2=\frac{c}{a}=2m+2\end{cases}}\)
mà \(\left(x_1+x_2\right)^2=\left(2m+2\right)^2\Leftrightarrow x_1^2+x_2^2+2x_1x_2=4m^2+8m+4\)
\(\Leftrightarrow x_1^2+x_2^2=4m^2+8m+4-2\left(2m+2\right)=4m^2+8m+4-4m-4=4m^2-4m\)
Lại có : \(x_1^2+x_2^2=8\Rightarrow4m^2-4m-8=0\)
\(\Leftrightarrow4\left(m^2-m-2\right)=0\Leftrightarrow\left(m-2\right)\left(m+1\right)=0\Leftrightarrow\orbr{\begin{cases}m=2\left(chon\right)\\m=-1\left(loai\right)\end{cases}}\)
Để pt có hai nghiệm phân biệt thì Δ' > 0
<=> ( m + 1 )2 - 2m - 2 > 0
<=> m2 + 2m + 1 - 2m - 2 > 0
<=> m2 - 1 > 0 => m > 1 hoặc m < -1
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2m-2\\x_1x_2=\frac{c}{a}=2m+2\end{cases}}\)
Khi đó x12 + x22 = 8
<=> ( x1 + x2 )2 - 2x1x2 = 8
<=> 4m2 + 8m + 4 - 4m - 4 - 8 = 0
<=> 4m2 + 4m - 8 = 0
<=> m2 + m - 2 = 0
<=> ( m - 1 )( m + 2 ) = 0
<=> m = 1 ( loại ) hoặc m = -2 (tm)
Vậy ...
1) \(\Delta\)' = (-m+2)2 -2m+5 = 4-4m+m2-2m+5 = m2-6m+9 = (m-3)2 \(\ge\) 0
=> pt luôn có nghiệm với mọi m
2) ta có : B = x1(1-x2) + x2(1-x1) < 4
<=>B = x1 - x1x2 + x2 - x1x2 < 4
<=> B = (x1 + x2 ) - 2x1x2 < 4
theo định lí vi - ét ta có \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+4\\x_1x_2=\dfrac{c}{a}=2m-5\end{matrix}\right.\)
=> 2m+4 - 2(2m-5) < 4
=> -2m + 14 < 4
=> -2m < -10
=> m > 5
vậy để pt thỏa mãn B = x1(1-x2) + x2(1-x1) < 4 thì m > 5
viết lại câu hỏi khác đi, đề không rõ ràng X với x rồi . lung tung, dung công cụ soạn thảo đi nha bạn