K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2021

Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)

hay \(\left(2m+2\right)^2-4\left(2m+2\right)=4m^2+8m+4-8m-8=4m^2-4>0\)

\(\Leftrightarrow4m^2>4\Leftrightarrow m^2>1\Leftrightarrow\left(m-1\right)\left(m+1\right)>0\Leftrightarrow\hept{\begin{cases}m>1\\m>-1\end{cases}\Leftrightarrow m>1}\)

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2m-2\\x_1x_2=\frac{c}{a}=2m+2\end{cases}}\)

mà \(\left(x_1+x_2\right)^2=\left(2m+2\right)^2\Leftrightarrow x_1^2+x_2^2+2x_1x_2=4m^2+8m+4\)

\(\Leftrightarrow x_1^2+x_2^2=4m^2+8m+4-2\left(2m+2\right)=4m^2+8m+4-4m-4=4m^2-4m\)

Lại có : \(x_1^2+x_2^2=8\Rightarrow4m^2-4m-8=0\)

\(\Leftrightarrow4\left(m^2-m-2\right)=0\Leftrightarrow\left(m-2\right)\left(m+1\right)=0\Leftrightarrow\orbr{\begin{cases}m=2\left(chon\right)\\m=-1\left(loai\right)\end{cases}}\)

15 tháng 4 2021

Để pt có hai nghiệm phân biệt thì Δ' > 0

<=> ( m + 1 )2 - 2m - 2 > 0

<=> m2 + 2m + 1 - 2m - 2 > 0

<=> m2 - 1 > 0 => m > 1 hoặc m < -1

Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2m-2\\x_1x_2=\frac{c}{a}=2m+2\end{cases}}\)

Khi đó x12 + x22 = 8

<=> ( x1 + x2 )2 - 2x1x2 = 8

<=> 4m2 + 8m + 4 - 4m - 4 - 8 = 0

<=> 4m2 + 4m - 8 = 0

<=> m2 + m - 2 = 0

<=> ( m - 1 )( m + 2 ) = 0

<=> m = 1 ( loại ) hoặc m = -2 (tm)

Vậy ...

AH
Akai Haruma
Giáo viên
3 tháng 4 2022

Lời giải:
Để pt có 2 nghiệm thì:
$\Delta'=(m^2+2m)^2-(m^2+7)\geq 0$

$\Leftrightarrow m^4+4m^3+3m^2-7\geq 0(*)$
Áp dụng định lý Viet:

$x_1+x_2=2m(m+2)$

$x_1x_2=m^2+7$

Khi đó:

$x_1x_2-2(x_1+x_2)=4$

$\Leftrightarrow m^2+7-4m(m+2)=4$

$\Leftrightarrow -3m^2-8m+3=0$

$\Leftrightarrow (1-3m)(m+3)=0$

$\Leftrightarrow m=\frac{1}{3}$ hoặc $m=-3$

Thử lại với $(*)$ thấy đều không thỏa mãn

Vậy không tồn tại $m$ thỏa mãn đkđb

\(x^2-\left(m-1\right)x-2=0\)

a=1; b=-m+1; c=-2

Vì a*c=-2<0

nên phương trình luôn có hai nghiệm phân biệt

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-\left(m-1\right)\right]}{1}=m-1\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-2}{1}=-2\end{matrix}\right.\)

\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(=\left(m-1\right)^2-4\cdot\left(-2\right)=\left(m-1\right)^2+8\)

=>\(x_1-x_2=\pm\sqrt{\left(m-1\right)^2+8}\)

\(\dfrac{x_1}{x_2}=\dfrac{x_2^2-3}{x_1^2-3}\)

=>\(x_1\left(x_1^2-3\right)=x_2\left(x_2^2-3\right)\)

=>\(x_1^3-x_2^3=3x_1-3x_2\)

=>\(\left(x_1-x_2\right)\left(x_1^2+x_2^2+x_1x_2-3\right)=0\)

=>\(\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2-3\right]=0\)

=>\(\left[{}\begin{matrix}x_1-x_2=0\\\left(m-1\right)^2-\left(-2\right)-3=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}\sqrt{\left(m-1\right)^2+8}=0\left(vôlý\right)\\\left(m-1\right)^2-1=0\end{matrix}\right.\)

=>\(\left(m-1\right)^2=1\)

=>\(\left[{}\begin{matrix}m-1=1\\m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=0\end{matrix}\right.\)

1) Thay m=1 vào phương trình, ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

Vậy: Khi m=1 thì phương trình có nghiệm duy nhất là x=1

1) Bạn tự làm

2) Ta có: \(\Delta'=\left(m-1\right)^2\ge0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\) 

a) Ta có: \(x_1+x_2=-1\) \(\Rightarrow2m=-1\) \(\Leftrightarrow m=-\dfrac{1}{2}\)

   Vậy ...

b) Ta có: \(x_1^2+x_2^2=13\) \(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)

            \(\Rightarrow4m^2-4m-11=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{13}}{2}\)

  Vậy ... 

1 tháng 4 2023

\(x^2+2\left(m+1\right)+4m-4=0\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2\left(m+1\right)\\x_1x_2=\dfrac{c}{a}=4m-4\end{matrix}\right.\)

Ta có :

\(x_1^2+x_2^2+3x_1x_2=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+3x_1x_2=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=0\)

\(\Leftrightarrow\left[-2\left(m+1\right)\right]^2+\left(4m-4\right)=0\)

\(\Leftrightarrow4\left(m^2+2m+1\right)+4m-4=0\)

\(\Leftrightarrow4m^2+8m+4+4m-4=0\)

\(\Leftrightarrow4m^2+12m=0\)

\(\Leftrightarrow4m\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-3\end{matrix}\right.\)

6 tháng 2 2019

a, Vì 1 < x1 < x2 < 6 nên pt đã cho có 2 nghiệm dương phân biệt

Tức là \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(2m-3\right)^2-4m^2+12m>0\\2m-3>0\\m^2-3m>0\end{cases}}\)

                              \(\Leftrightarrow\hept{\begin{cases}4m^2-12m+9-4m^2+12m>0\\m>\frac{3}{2}\\m< 0\left(h\right)m>3\end{cases}}\)

                               \(\Leftrightarrow m>3\)

Có \(\Delta=9>0\)

Nên pt có 2 nghiệm phân biệt \(x_1=\frac{2m-3-3}{2}=m-3\)

                                                \(x_2=\frac{2m-3+3}{2}=m\)                        (Do m - 3 < m nên x1  < x2 thỏa mãn đề bài)

Vì \(1< x_1< x_2< 6\)

\(\Rightarrow\hept{\begin{cases}m-3>1\\m< 6\end{cases}}\)

\(\Leftrightarrow4< m< 6\)(Thỏa mãn)

c, C1_) Có \(x_1^2+x_2^2=\left(m-3\right)^2+m^2\)

                        \(=m^2-6m+9+m^2\)

                         \(=2m^2-6m+9\)

                         \(=2\left(m^2-3m+\frac{9}{4}\right)+\frac{9}{2}\)

                        \(=2\left(m-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow m=\frac{3}{2}\)

C2_) Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2m-3\\x_1x_2=m^2-3m\end{cases}}\)

Có : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

                     \(=\left(2m-3\right)^2-2m^2+6m\)

                     \(=4m^2-12m+9-2m^2+6m\)

                     \(=2m^2-6m+9\)

                       \(=2\left(m-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)

Dấu "=" khi \(m=\frac{3}{2}\)

30 tháng 5 2016

\(\frac{3}{2}< m< \frac{9}{2}\)

30 tháng 5 2016

xin lỗi đánh nhầm  ta tìm được: 4  < m < 9         bạn nhé