Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
Đặt t = x2 (t \(\ge\) 0). Khi đó, phương trình đã cho trở thành: t2 - 2(m2 + 2).t + m4 + 3 = 0 (*)
\(\Delta\)' = (m2 +2)2 - (m4 + 3) = m4 + 4m2 + 4 - m4 - 3 = 4m2 + 1 > 0
=> (*) luôn có 2 nghiệm phân biệt. Gọi hai nghiệm đó là t1; t2
Theo hệ thức Vi - et ta có: t1 + t2 = 2(m2 + 2) > 0
t1. t2 = m4 + 3 > 0
=> t1 > 0 và t2 > 0 (thỏa mãn điều kiện của t)
vậy (*) luôn có 2 nghiệm dương phân biệt => pt đã cho luôn có 4 nghiệm phân biệt x1; x2 ; x3; x4
trong đó x1; x2 thỏa mãn x12 = x22 = t1; x32 = x24 = t2 ; x1; x2 đối nhau ; x3; x4 đối nhau
=> \(x_1^2+x^2_2+x^2_3+x^2_4+x_1\cdot x_2\cdot x_3\cdot x_4=2t_1+2t_2+\left(-x_1^2\right).\left(-x_2^2\right)=2.\left(t_1+t_2\right)+t_1.t_2\)
= 2.2.(m2 + 2) + m4 + 3 = m4 + 4m2 + 11
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha
Đặt \(x^2=t\left(t>0\right)\)
\(pt\Leftrightarrow t^2-2\left(m+1\right)t+4m=0\left(1\right)\)
Để pt có 4 nghiệm phân biệt \(\Leftrightarrow\left(1\right)\) có 2 nghiệm dương phân biệt
\(\Leftrightarrow\hept{\begin{cases}\Delta'=m^2+2m+1-4m>0\\x_1+x_2=2\left(m+1\right)>0\\x_1.x_2=4m>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)^2>0\\m>-1\\m>0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}m\ne1\\m>0\end{cases}}\)
giả sử \(\hept{\begin{cases}x_1^2=x_2^2=t_1\\x_3^2=x_4^2=t_2\end{cases}\Rightarrow2x_1^2}+2x_3^2=12\)
\(\Leftrightarrow2\left(t_1+t_2\right)=12\)
\(\Leftrightarrow2.2\left(m+1\right)=12\Leftrightarrow m+1=3\Leftrightarrow m=2\) (TM)
Vậy m=2 thì pt có 4 nghiệm pb
Lời giải:
Đặt \(x^2=t\Rightarrow t^2-2(m^2+2)t+m^4+3=0\)
Để pt ban đầu có 4 nghiệm $x_1,x_2,x_3,x_4$ thì pt \(t^2-2(m^2+2)t+m^4+3=0\) phải có hai nghiệm dương
Điều này xảy ra khi:
\(\left\{\begin{matrix} \Delta'=(m^2+2)^2-(m^4+3)>0\\ t_1+t_2=2(m^2+2)>0\\ t_1t_2=m^4+3>0\end{matrix}\right.\) \(\Leftrightarrow \forall m\in\mathbb{R}\)
Khi đó , pt ban đầu có các nghiệm \(x_1=\sqrt{t_1}; x_2=-\sqrt{t_1}; x_3=\sqrt{t_2}; x_4=-\sqrt{t_2}\)
Suy ra:
\(x_1^2+x_2^2+x_3^2+x_4^2+x_1x_2x_3x_4=11\)
\(\Leftrightarrow t_1+t_1+t_2+t_2+(-t_1)(-t_2)=11\)
\(\Leftrightarrow 2(t_1+t_2)+t_1t_2=11\)
\(\Leftrightarrow 4(m^2+2)+m^4+3=11\)
\(\Leftrightarrow m^4+4m^2=0\)
\(\Leftrightarrow m=0\)
thanks very much. Have a nice day :) :) :) <3