Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải pt tìm x1 ; x 2 theo m
sau đó giải BPT tìm m thối.x1>1 và x2 < 6
denta= (2m-3)^2 -4(m^2-3m)=9>0 => pt luôn có 2 nghiệm phân biệt với mọi x
*x1=[2m-3+9]/2=m+3
*x2=[2m-3-9]/2=m-6
Theo bài ra ta có: hai nghiệm x1, x2 cùng dương <=> P>0 và S>0
=> m>3 thì hai nghiệm x1, x2 luôn cùng dương.
cho pt: \(x^2+2\left(m-2\right)x-m^2=0\) . Tìm m để pt có 2no dương pb x1< x2 t/m: \(|x_1|-|x_2|=6\)
\(\Delta=4\left(m-2\right)^2+4m^2\)
\(A=8m^2-16m+16\)
Để pt có 2 ng0 dương pb: \(\left\{{}\begin{matrix}\Delta>0\\P=m^2>0\\S=2m-4>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m>2\end{matrix}\right.\)\(\Rightarrow m>2\)
\(\left|x_1\right|-\left|x_2\right|=6\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=36\)
\(\Leftrightarrow4\left(m-2\right)^2-4m^2=36\)
\(\Leftrightarrow m=\frac{-5}{4}\left(KTM\right)\)
Vậy ko tồn tại m.
Lời giải:
a) Để PT có hai nghiệm pb thì \(\Delta=(2m-3)^2-4(m^2-3m)>0\)
\(\Leftrightarrow 9>0\) (luôn đúng với mọi \(m\in\mathbb{R}\) )
Ta có PT tương đương \((x-m)(x-m+3)=0\)
\(\Rightarrow\left\{\begin{matrix}x_1=m-3\\x_2=m\end{matrix}\right.\). Để hai nghiệm thuộc khoảng \((1,6)\) thì :
\(1< m,m-3<6\Rightarrow 4< m<6\)
b) Từ phần a) suy ra hệ thức độc lập là \(x_1-x_2=-3\)
c) \(A=x_2^3-x_1^3=m^3-(m-3)^3=9m^2-27m+27=9(m-\frac{3}{2})^2+\frac{27}{4}\geq \frac{27}{4}\)
Do đó \(A_{\min}=\frac{27}{4}\Leftrightarrow m=\frac{3}{2}\)
cho mik hỏi câu b chút, mik chưa hiểu tại sao1<m,m-3<6 lại suy ra đc 4<m<6 vậy ?
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đ
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đề bài thì
\(x^2_2+x^2_1\ge10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)
Làm tiếp sẽ ra. Câu còn lại tương tự
PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta=\left(2m-3\right)^2-4\left(m-3\right)=9>0\)
Vậy PT có 2 nghiệm phân biệt với mọi m
Ta có \(\left[{}\begin{matrix}x_1=\dfrac{2m-3+3}{2}=m\\x_2=\dfrac{2m-3-3}{2}=m-3\end{matrix}\right.\)
Ta thấy \(m>m-3\) nên \(1< m-3< m< 6\Leftrightarrow4< m< 6\)
Vậy \(4< m< 6\) thỏa yêu cầu đề