Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có : \(\Delta'=m^2-2m+1-m^2+m\)
\(=-m+1\)
để phương trình có đúng một nghiệm, thì : \(\Delta'=0\)\(\Leftrightarrow-m+1=0\)\(\Rightarrow m=1\)
c) Ta có: \(\Delta'=m^2-\left(m-3\right)\left(m-6\right)\)
\(=m^2-m^2+6m+3m-18\)
\(=9m-18\)
\(=9\left(m-2\right)\)
Để phương trình có 2 nghiệm phân biệt thì : \(\Delta'>0\)\(\Leftrightarrow9\left(m-2\right)>0\)
\(\Leftrightarrow m-2>0\)\(\Leftrightarrow m>2\)
c, phương trình c có 2 nghiệm \(\leftrightarrow\leftrightarrow\)\(\Delta\)= -36m + 72>0
<=> m <2
b,phương trình c có 1 nghiệm phân biệt khi và chỉ khi: \(\Delta\)= -4m+4=0
<=> m= 1
\(\left(m+1\right)x^2-2\left(m-1\right)x+m-3=0\) (1)
a) Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:
\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-3\right)>0\)
\(\Leftrightarrow\left(m^2-2m+1\right)-\left(m^2-2m-3\right)>0\)
\(\Leftrightarrow4>0\)(luôn đúng)
Vậy phương trình có 2 nghiệm phân biệt với mọi m.
b) Để t nghĩ tí
\(\left(m+1\right)x^3+\left(3m-1\right)x^2-x-4m+1=0\)
<=> (m.x3 - m) + (x3 - x) + (3mx2 - 3m) - (x2 - 1) = 0
<=> m(x - 1)(x2 + x + 1) + x(x - 1).(x+1) + 3m(x - 1)(x+1) - (x -1)(x+ 1) = 0
<=> (x - 1).[m(x2 + x+ 1) + x(x+1) + 3m(x+ 1) - (x+1)] = 0
<=> (x - 1).(mx2 + mx + m + x2 + x + 3mx + 3m - x - 1) = 0
<=> (x - 1).[(m + 1)x2 + 4mx + 4m - 1)] = 0 (*)
b) (*) <=> x = 1 hoặc (m + 1)x2 + 4mx + 4m - 1) = 0 (1)
Để (*) có 3 nghiệm phân biệt trong đó có 2 ngiệm âm <=> (1) có 2 nghiệm âm phân biệt
<=> m+ 1 \(\ne\) 0 và \(\Delta\)' > 0 và x1.x2 > 0 và x1 + x2 < 0 trong đó x1; x2 là hai nghiệm của (1)
+) m + 1 \(\ne\) 0 <=> m \(\ne\) - 1
+) \(\Delta\)' = (2m)2 - (m + 1).(4m- 1) = 4m2 - 4m2 - 3m + 1 = -3m + 1 > 0 => m < 1/3
+) Theo hệ thức Vi ét ta có: x1 + x2 = \(-\frac{4m}{m+1}\); x1.x2 = \(\frac{4m-1}{m+1}\)
=> \(-\frac{4m}{m+1}\) < 0 và \(\frac{4m-1}{m+1}\) > 0
=> \(\frac{4m}{m+1}>0\) và \(\frac{4m+1}{m+1}\) > 0 => \(\frac{4m}{m+1}\) > 0 => 4m và m + 1 cùng dấu
=> m > 0 hoặc m < -1
Kết hợp điều kiện m < 1/3 và m \(\ne\) -1 => m < - 1 hoặc 0 < m < 1/3
Vậy...