Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left[2\left(m+1\right)\right]^2-4m^2=4m+1\)
a) để pt có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow4m+1>0\Leftrightarrow m>\frac{-1}{4}\)
b) thay x = -2 vào pt , ta được :
\(\left(-2\right)^2+2\left(m+1\right)\left(-2\right)+m^2=0\)
\(\Rightarrow m^2-4m=0\Rightarrow\orbr{\begin{cases}m=0\\m=4\end{cases}}\)
a) Phương trình có 2 nghiệm phân biệt:
<=> \(\Delta'=\left(m+1\right)^2-m^2>0\)
<=> m > -1/2
Vậy....
b) Phương trình có 2 nghiệm phân biệt trong đó có 1 nghiệm x = - 2
Thay x = -2 vào ta có: \(m^2-4\left(m+1\right)+4=0\)
<=> m = 0 (thỏa mãn )
hoặc m = 4 ( thỏa mãn)
Vậy ...