K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 6 2018

Lời giải:

Trước tiên để pt có thể có 2 nghiệm thì \(2m-1\neq 0\Leftrightarrow m\neq \frac{1}{2}\)

Với \(m\neq \frac{1}{2}\). PT có 2 nghiệm khi:

\(\Delta'=m^2-(2m-1)=(m-1)^2>0\Leftrightarrow m\neq 1\)

Áp dụng định lý Viete có: \(\left\{\begin{matrix} x_1+x_2=\frac{2m}{2m-1}\\ x_1x_2=\frac{1}{2m-1}\end{matrix}\right.\)

Ta có:

\(|x_1^2-x_2^2|=1\)

\(\Rightarrow |x_1^2-x_2^2|^2=1\)

\(\Leftrightarrow (x_1-x_2)^2(x_1+x_2)^2=1\)

\(\Leftrightarrow [(x_1+x_2)^2-4x_1x_2](x_1+x_2)^2=1\)

\(\Leftrightarrow [\frac{4m^2}{(2m-1)^2}-\frac{4}{2m-1}].\frac{4m^2}{(2m-1)^2}=1\)

\(\Leftrightarrow 16(m-1)^2m^2=(2m-1)^4\)

\(\Leftrightarrow [4(m^2-m)-(2m-1)^2][4(m^2-m)+(2m-1)^2]=0\)

\(\Rightarrow 8m^2-8m+1=0\)

\(\Rightarrow m=\frac{2\pm \sqrt{2}}{4}\) (t/m)

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0
10 tháng 8 2018

dùng phương pháp Vi-ét ko hoàn toàn

(mình đăng lên youtube rồi đấy)

10 tháng 8 2018

xem rồi giùm mk nha

25 tháng 7 2016

Điều kiên có nghiệm của phương trình : \(\Delta'=9-m\ge0\Leftrightarrow m\le9\)

Theo hệ thức Vi-et , ta có : \(\begin{cases}x_1+x_2=6\\x_1.x_2=m\end{cases}\)

Biến đổi : \(\left(x_1^2+1\right)\left(x_2^2+1\right)=36\)

\(\Leftrightarrow\left(x_1.x_2\right)^2+\left(x_1+x_2\right)^2-2x_1.x_2-35=0\)

\(\Leftrightarrow m^2+36-2m-35=0\)

\(\Leftrightarrow\left(m-1\right)^2=0\Leftrightarrow m=1\) (thỏa mãn)

Vậy m = 1 thỏa mãn đề bài.

25 tháng 7 2016

Cảm ơn bạn nhiều nha!