Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\Delta'=1-\left(2m-5\right)=6-2m\)
để pt có nghiệm kép \(6-2m=0\Leftrightarrow m=3\)
b, để pt có 2 nghiệm pb \(6-2m>0\Leftrightarrow m< 3\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=2m-5\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-7x_1x_2=0\)
\(4-7\left(2m-5\right)=0\Leftrightarrow2m-5=\dfrac{4}{7}\Leftrightarrow m=\dfrac{39}{14}\)(tm)
a) Xét pt \(x^2-2x+2m-5=0\), có \(\Delta'=\left(-1\right)^2-\left(2m-5\right)=1-2m+5=6-2m\)
Để pt có nghiệm kép thì \(\Delta'=0\)hay \(6-2m=0\)\(\Leftrightarrow m=3\)
b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)hay \(6-2m>0\)\(\Leftrightarrow m< 3\)
Khi đó, ta có \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-5\end{cases}}\)(hệ thức Vi-ét)
Từ đó \(x_1^2+x_2^2=5x_1x_2\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7x_1x_2\)\(\Leftrightarrow2^2=7\left(2m-5\right)\)\(\Leftrightarrow4=14m-35\)\(\Leftrightarrow14m=39\)\(\Leftrightarrow m=\frac{39}{14}\)(nhận)
Vậy để [...] thì \(m=\frac{39}{14}\)
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha
a, Để phương trình có 2 nghiệm phân biệt thì
\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)>0\)
\(< =>4m^2-4m+1-4m^2+1>0\)
\(< =>2-4m>0\)\(< =>2>4m< =>m< \frac{2}{4}\)
b , bạn dùng vi ét là ra
Lập: \(\Delta'=b'^2-ac=1^2-1.\left(m-1\right)=1-m+1=2-m\)
Phương trình có hai nghiệm phân biệt khi: \(\Delta>0\Leftrightarrow2-m>0\Leftrightarrow m< 2\)
Áp dụng hệ thức Vi-et, ta có:
\(x_1+x_2=\frac{-b}{a}=\frac{2}{1-m};x_1x_2=\frac{c}{a}=\frac{1}{m-1}\)
Thay \(x_1=2x_2\)vào rồi tự giải tiếp nha, mk lười viết công thức quá
a, Để pt có nghiệm thì \(\Delta\ge0\)
Hay: \(\left(-3\right)^2-4\left(m-1\right)\ge0\)
\(\Leftrightarrow9-4m+4\ge0\)
\(\Leftrightarrow-4m\ge-13\)
\(\Leftrightarrow m\le\frac{13}{4}\)
b, Với \(m\le\frac{13}{4}\), theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=3\\x_1x_2=m-1\end{cases}}\)
Ta có: \(x_1^2-x_2^2=15\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)=15\)
\(\Leftrightarrow\left(x_1+x_2\right)\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=15\)
\(\Leftrightarrow3\sqrt{3^2-4\left(m-1\right)}=15\)
\(\Leftrightarrow\sqrt{9-4m+4}=5\)
\(\Leftrightarrow\sqrt{13-4m}=5\)
\(\Leftrightarrow13-4m=25\)
\(\Leftrightarrow4m=-12\)
\(\Leftrightarrow m=-3\left(tm\right)\)
=.= hk tốt!!
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
Sửa đề: \(\left(m-1\right)x^2+3mx-4m+1=0\)
Ta có: \(\Delta=\left(3m\right)^2-4\cdot\left(-4m+1\right)\left(m-1\right)=9m^2-4\left(-4m^2+4m+m-1\right)\)
\(=9m^2+16m^2-20m+4\)
\(=25m^2-20m+4\)
\(=\left(5m-2\right)^2\ge0\forall m\)
hay phương trình luôn có nghiệm với mọi m
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-3m}{m-1}\\x_1\cdot x_2=\dfrac{-4m+1}{m-1}\end{matrix}\right.\)
Vì \(x_1+x_2=\dfrac{-3m}{m-1}\) và \(2x_1=3x_2\) nên ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-3m}{m-1}\\2x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=\dfrac{-6m}{m-1}\\2x_1-3x_2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x_2=\dfrac{-6m}{m-1}\\x_1+x_2=\dfrac{-3m}{m-1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-6m}{5m-5}\\x_1=\dfrac{-9m}{5m-5}\end{matrix}\right.\)
Ta có: \(x_1\cdot x_2=\dfrac{-4m+1}{m-1}\)
\(\Leftrightarrow\dfrac{-6m}{5m-5}\cdot\dfrac{-9m}{5m-5}=\dfrac{-4m+1}{m-1}\)
\(\Leftrightarrow\dfrac{54m^2}{5m-5}=\dfrac{-20m+5}{5m-5}\)
Suy ra: \(54m^2+20m-5=0\)
\(\Delta=20^2-4\cdot54\cdot\left(-5\right)=1480\)
Đến đây bạn tự làm tiếp nhé, chỉ cần tìm m và so sánh với ĐK m khác 1 thôi