Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\Delta'=1-\left(2m-5\right)=6-2m\)
để pt có nghiệm kép \(6-2m=0\Leftrightarrow m=3\)
b, để pt có 2 nghiệm pb \(6-2m>0\Leftrightarrow m< 3\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=2m-5\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-7x_1x_2=0\)
\(4-7\left(2m-5\right)=0\Leftrightarrow2m-5=\dfrac{4}{7}\Leftrightarrow m=\dfrac{39}{14}\)(tm)
a) Xét pt \(x^2-2x+2m-5=0\), có \(\Delta'=\left(-1\right)^2-\left(2m-5\right)=1-2m+5=6-2m\)
Để pt có nghiệm kép thì \(\Delta'=0\)hay \(6-2m=0\)\(\Leftrightarrow m=3\)
b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)hay \(6-2m>0\)\(\Leftrightarrow m< 3\)
Khi đó, ta có \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-5\end{cases}}\)(hệ thức Vi-ét)
Từ đó \(x_1^2+x_2^2=5x_1x_2\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7x_1x_2\)\(\Leftrightarrow2^2=7\left(2m-5\right)\)\(\Leftrightarrow4=14m-35\)\(\Leftrightarrow14m=39\)\(\Leftrightarrow m=\frac{39}{14}\)(nhận)
Vậy để [...] thì \(m=\frac{39}{14}\)
a) Thay \(m=-5\) vào PT ta được:
\(x^2-\left(-5\right)x+2.\left(-5\right)-3=0\)
\(\Rightarrow x^2+5x-10-3=0\)
\(\Rightarrow x^2+5x-13=0\)
\(\Delta=5^2-4.1.\left(-13\right)=25+52=77>0\)
PT có 2 nghiệm phân biệt:
\(x_1=-\frac{5+\sqrt{77}}{2}\)
\(x_2=-\frac{5-\sqrt{77}}{2}\)
Vậy với m = -5 thì PT có nghiệm là \(S=\left\{-\frac{5+\sqrt{77}}{2};-\frac{5-\sqrt{77}}{2}\right\}\)
b) PT có nghiệm kép \(\Leftrightarrow\Delta=0\Leftrightarrow\left(-m\right)^2-4.1.\left(2m-3\right)=0\)
\(\Leftrightarrow m^2-8m+12=0\Leftrightarrow\left(m-2\right)\left(m-6\right)=0\)
\(\Leftrightarrow\int^{m-2=0}_{m-6=0}\Leftrightarrow\int^{m=2}_{m=6}\)
Vậy với m = 2 và m = 6 thì PT có nghiệm kép.
c) PT có 2 nghiệm trái dấu \(\Leftrightarrow\int^{\Delta>0}_{2m-3<0}\Leftrightarrow\int^{m>6}_{m<\frac{3}{2}}\)(vô lí)
Vậy không có giá trị nào của m thỏa mãn PT có 2 nghiệm trái dấu.
d) Ta có: \(S=x_1+x_2=-\frac{b}{a}=-\frac{\left(-m\right)}{1}=m\)
\(\Rightarrow m=S^{\left(1d\right)}\)
\(P=x_1x_2=\frac{c}{a}=\frac{2m-3}{1}=2m-3\)
\(\Rightarrow2m-3=P\Rightarrow2m=P+3\Rightarrow m=\frac{P+3}{2}^{\left(2d\right)}\)
Từ \(\left(1d\right)\&\left(2d\right)\)
\(\Rightarrow S=\frac{P+3}{2}\Rightarrow2S=P+3\)
\(\Rightarrow P+3-2S=0\)
\(\Rightarrow x_1x_2+3-2\left(x_1+x_2\right)=0\)
\(\Rightarrow x_1x_2-2x_1-2x_2+3=0\)
Đây là hệ thức giữa 2 nghiệm không phụ thuộc vào m.
e) PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow m>6\)
a, đenta' = m^2+1>0 với mọi m
=>pt luôn có 2 nghiệm phân biệt với mọi m
b, theo viet ta có:
x12+x22=7
<=>(x1+x2)2-2x1x2=7
=>(2m)2+2=7
=>4m2=5
=> m2=5/4
=>m=căn(5)/2 hoặc m=-căn(5)/2
a, Ta có \(\Delta'=\left(m-1\right)^2-m^2+9\)
\(=m^2-2m+1-m^2+9\)
\(=10-2m\)
Để pt có nghiệm kép thì \(\Delta'=0\Leftrightarrow m=5\)
Với m = 5 thì pt có nghiệm kép \(x=\frac{-b'}{a}=\frac{m-1}{1}=\frac{5-1}{1}=4\)
b,Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow m\le5\)
Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-9\end{cases}}\)
Ta có \(\frac{x_1^2+x_2^2}{2}-x_1-x_2=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{2}-\left(x_1+x_2\right)\)
\(=\frac{\left(x_1+x_2\right)^2}{2}-x_1x_2-\left(x_1+x_2\right)\)
\(=\frac{4\left(m-1\right)^2}{2}-m^2+9-2\left(m-1\right)\)
\(=2\left(m-1\right)^2-m^2+9-2m+2\)
\(=2m^2-4m+2-m^2+9-2m+2\)
\(=m^2-6m+13\)
\(=\left(m-3\right)^2+4\ge4\)
Dấu "=" xảy ra <=> m = 3 (tm)
a: khi m=1 thì pt sẽ là:
x^2+3x+1=0
=>\(x=\dfrac{-3\pm\sqrt{5}}{2}\)
b: Δ=(2m+1)^2-4m^2
=4m+1
Để phương trình có nghiệm kép thì 4m+1=0
=>m=-1/4
Khi m=-1/4 thì pt sẽ là:
x^2+x*(-1/4*2+1)+(-1/4)^2=0
=>x^2+1/2x+1/16=0
=>(x+1/4)^2=0
=>x+1/4=0
=>x=-1/4