K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: khi m=1 thì pt sẽ là:

x^2+3x+1=0

=>\(x=\dfrac{-3\pm\sqrt{5}}{2}\)

b: Δ=(2m+1)^2-4m^2

=4m+1

Để phương trình có nghiệm kép thì 4m+1=0

=>m=-1/4

Khi m=-1/4 thì pt sẽ là:

x^2+x*(-1/4*2+1)+(-1/4)^2=0

=>x^2+1/2x+1/16=0

=>(x+1/4)^2=0

=>x+1/4=0

=>x=-1/4

5 tháng 3 2022

a, \(\Delta'=1-\left(2m-5\right)=6-2m\)

để pt có nghiệm kép \(6-2m=0\Leftrightarrow m=3\)

b, để pt có 2 nghiệm pb \(6-2m>0\Leftrightarrow m< 3\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=2m-5\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-7x_1x_2=0\)

\(4-7\left(2m-5\right)=0\Leftrightarrow2m-5=\dfrac{4}{7}\Leftrightarrow m=\dfrac{39}{14}\)(tm) 

5 tháng 3 2022

a) Xét pt \(x^2-2x+2m-5=0\), có \(\Delta'=\left(-1\right)^2-\left(2m-5\right)=1-2m+5=6-2m\)

Để pt có nghiệm kép thì \(\Delta'=0\)hay \(6-2m=0\)\(\Leftrightarrow m=3\)

b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)hay \(6-2m>0\)\(\Leftrightarrow m< 3\)

Khi đó, ta có \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-5\end{cases}}\)(hệ thức Vi-ét)

Từ đó \(x_1^2+x_2^2=5x_1x_2\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7x_1x_2\)\(\Leftrightarrow2^2=7\left(2m-5\right)\)\(\Leftrightarrow4=14m-35\)\(\Leftrightarrow14m=39\)\(\Leftrightarrow m=\frac{39}{14}\)(nhận)

Vậy để [...] thì \(m=\frac{39}{14}\)

7 tháng 7 2015

bạn cap cả bài nhìn đau mắt gê :3

7 tháng 7 2015

a) Thay \(m=-5\) vào PT ta được:

\(x^2-\left(-5\right)x+2.\left(-5\right)-3=0\)

\(\Rightarrow x^2+5x-10-3=0\)

\(\Rightarrow x^2+5x-13=0\)

\(\Delta=5^2-4.1.\left(-13\right)=25+52=77>0\)

PT có 2 nghiệm phân biệt:

\(x_1=-\frac{5+\sqrt{77}}{2}\)

\(x_2=-\frac{5-\sqrt{77}}{2}\)

Vậy với m = -5 thì PT có nghiệm là \(S=\left\{-\frac{5+\sqrt{77}}{2};-\frac{5-\sqrt{77}}{2}\right\}\)

b) PT có nghiệm kép \(\Leftrightarrow\Delta=0\Leftrightarrow\left(-m\right)^2-4.1.\left(2m-3\right)=0\)

\(\Leftrightarrow m^2-8m+12=0\Leftrightarrow\left(m-2\right)\left(m-6\right)=0\)

\(\Leftrightarrow\int^{m-2=0}_{m-6=0}\Leftrightarrow\int^{m=2}_{m=6}\)

Vậy với m = 2 và m = 6 thì PT có nghiệm kép.

c) PT có 2 nghiệm trái dấu \(\Leftrightarrow\int^{\Delta>0}_{2m-3<0}\Leftrightarrow\int^{m>6}_{m<\frac{3}{2}}\)(vô lí)

Vậy không có giá trị nào của m thỏa mãn PT có 2 nghiệm trái dấu.

d) Ta có: \(S=x_1+x_2=-\frac{b}{a}=-\frac{\left(-m\right)}{1}=m\)

\(\Rightarrow m=S^{\left(1d\right)}\)

              \(P=x_1x_2=\frac{c}{a}=\frac{2m-3}{1}=2m-3\)

\(\Rightarrow2m-3=P\Rightarrow2m=P+3\Rightarrow m=\frac{P+3}{2}^{\left(2d\right)}\)

Từ \(\left(1d\right)\&\left(2d\right)\)

\(\Rightarrow S=\frac{P+3}{2}\Rightarrow2S=P+3\)

\(\Rightarrow P+3-2S=0\)

\(\Rightarrow x_1x_2+3-2\left(x_1+x_2\right)=0\)

\(\Rightarrow x_1x_2-2x_1-2x_2+3=0\)

Đây là hệ thức giữa 2 nghiệm không phụ thuộc vào m.

e) PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow m>6\)

20 tháng 4 2016

a, đenta' = m^2+1>0 với mọi m

=>pt luôn có 2 nghiệm phân biệt với mọi m

b, theo viet ta có:

x12+x22=7

<=>(x1+x2)2-2x1x2=7

=>(2m)2+2=7

=>4m2=5

=> m2=5/4

=>m=căn(5)/2 hoặc m=-căn(5)/2

28 tháng 4 2019

a, Ta có \(\Delta'=\left(m-1\right)^2-m^2+9\)

                    \(=m^2-2m+1-m^2+9\)

                     \(=10-2m\)

Để pt có nghiệm kép thì \(\Delta'=0\Leftrightarrow m=5\)

Với m = 5 thì pt có nghiệm kép \(x=\frac{-b'}{a}=\frac{m-1}{1}=\frac{5-1}{1}=4\)

b,Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow m\le5\)

Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-9\end{cases}}\)

Ta có \(\frac{x_1^2+x_2^2}{2}-x_1-x_2=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{2}-\left(x_1+x_2\right)\)

                                            \(=\frac{\left(x_1+x_2\right)^2}{2}-x_1x_2-\left(x_1+x_2\right)\)

                                             \(=\frac{4\left(m-1\right)^2}{2}-m^2+9-2\left(m-1\right)\)

                                             \(=2\left(m-1\right)^2-m^2+9-2m+2\)

                                               \(=2m^2-4m+2-m^2+9-2m+2\)

                                                \(=m^2-6m+13\)

                                                \(=\left(m-3\right)^2+4\ge4\)

Dấu "=" xảy ra <=> m = 3 (tm)