Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\Delta\) = (-2m)2 - 4.1.(m-2) = 4m2 - 4m + 8 = (4m2 - 4m + 1) + 7 = (2m-1)2 + 7 \(\ge\) 7 > 0 x do đo (1) luôn có 2 nghiệm với mọi m.
\(A=x_1^2+x_2^2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=4m^2-2\left(3m-2\right)\)
\(=4m^2-6m+4\)
\(=4\left(m^2-\dfrac{3}{2}m+1\right)\)
\(=4\left(m^2-2\cdot m\cdot\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{7}{16}\right)\)
\(=4\left(m-\dfrac{3}{4}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\)
Dấu '=' xảy ra khi m=3/4
Phương trình x 2 - m x + m 2 - 3 = 0 có hai nghiệm x 1 , x 2 là độ dài các cạnh góc vuông của một tam giác vuông với cạnh huyền có độ dài bằng 2 khi và chỉ khi:
Δ = m 2 − 4 m 2 + 12 ≥ 0 S = x 1 + x 2 = m > 0 P = x 1 . x 2 > 0 x 1 2 + x 2 2 = 4 ⇔ 3 < m ≤ 4 m > 0 x 1 + x 2 2 − 2 x 1 x 2 = 4
⇔ 3 < m ≤ 2 m 2 − 2 m 2 − 3 = 4 ⇔ 3 < m ≤ 2 m 2 = 2 ⇔ m ∈ ∅
Đáp án cần chọn là: D
Bài 2:
a: \(\text{Δ}=\left(4m+2\right)^2-4\left(4m+3\right)\)
\(=16m^2+16m+4-16m-12=16m^2-8\)
Để phương trình có hai nghiệm thì \(2m^2>=1\)
=>\(\left[{}\begin{matrix}m>=\dfrac{1}{\sqrt{2}}\\m< =-\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)
c: \(A=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)
\(=\left(4m+2\right)^3-3\cdot\left(4m+3\right)\left(4m+2\right)\)
\(=64m^3+96m^2+48m+8-3\left(16m^2+20m+6\right)\)
\(=64m^3+96m^2+48m+8-48m^2-60m-18\)
\(=64m^3+48m^2-12m-10\)
câu 1) ta có x2-2(m+2)x +2m2+7=0
ĐK để pt trên có nghiệm: Δ' ≥ 0
⇔ (m + 2)2 -2m2 -7 ≥ 0 ⇔ \(1\le m\le3\)
pt trên có 1 nghiệm x = 5 nên thế x = 5 vào pt ta có:
m2 -5m +6 =0 ⇔ \(\left[{}\begin{matrix}m=2\left(n\right)\\m=3\left(n\right)\end{matrix}\right.\)
với m = 2 thế vào pt ta có: x2 -8x +15 =0 ⇔ \(\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)
với m = 3 thế vào pt ta có: x2 -10x + 25 =0 ⇔ pt nghiệm kép x = 5
câu 2) đề hơi sai tí nhé bạn, mình làm theo yêu cầu luôn!
x2 -2(m+1)x+m-a=0
ĐK để pt có nghiệm: Δ' ≥ 0
⇔ (m+1)2 - m +a ≥ 0 ⇔ m2 + m +1+ a ≥ 0
Gọi x1; x2 lần lượt là 2 nghiệm của pt trên, theo hệ thức Vi-et ta có
x1 + x2 = 2m+2 và x1x2 = m - a
A = x1 + x2 -2x1x2 = 2m+2 - 2.(m - a) = 2+2a
ta có : \(\Delta'=\left(m\right)^2-\left(m+1\right)\left(m-1\right)=m^2-\left(m^2-1\right)\)
\(=m^2-m^2+1=1>0\forall m\) \(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt
ta có : \(x_1^2+x_2^2=5\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=5\) (1)
áp dụng hệ thức vi ét cho phương trình đầu ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m}{m+1}\\x_1x_2=\dfrac{m-1}{m+1}\end{matrix}\right.\)
thay vào (1) ta có : \(\left(\dfrac{-2m}{m+1}\right)^2-2\left(\dfrac{m-1}{m+1}\right)=5\Leftrightarrow\dfrac{4m^2}{\left(m+1\right)^2}-2\dfrac{m-1}{m+1}=5\)
\(\Leftrightarrow\dfrac{4m^2-2\left(m-1\right)\left(m+1\right)}{\left(m+1\right)^2}=5\Leftrightarrow\dfrac{4m^2-2\left(m^2-1\right)}{\left(m+1\right)^2}=5\)
\(\Leftrightarrow\dfrac{4m^2-2m^2+2}{\left(m+1\right)^2}=5\Leftrightarrow4m^2-2m^2+2=5\left(m+1\right)^2\)
\(\Leftrightarrow2m^2+2=5\left(m^2+2m+1\right)\Leftrightarrow2m^2+2=5m^2+10m+5\)
\(\Leftrightarrow5m^2+10m+5-2m^2-2=0\Leftrightarrow3m^2+10m+3=0\)
\(\Leftrightarrow3m^2+m+9m+3=0\Leftrightarrow m\left(3m+1\right)+3\left(3m+1\right)=0\)
\(\Leftrightarrow\left(m+3\right)\left(3m+1\right)=0\Leftrightarrow\left[{}\begin{matrix}m+3=0\\3m+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=\dfrac{-1}{3}\end{matrix}\right.\)
vậy \(m=-3;m=\dfrac{-1}{3}\) là thỏa mãn điềm kiện bài toán
Ta có: \(\Delta=\left(-\left(m+5\right)\right)^2-4.1.\left(3m+6\right)\)
\(=m^2+10m+25-12m-24\)
\(=m^2-2m+1=\left(m-1\right)^2\ge0\)
=> pt luôn có 2 nghiệm phân biệt.
Theo định lí Vi-et, ta có:\(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=3m+6\end{matrix}\right.\)
\(\Rightarrow x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(m+5\right)^2-2\left(3m+6\right)\)
\(=m^2+10m+25-6m-12\)
\(=m^2+4m+13\)
Để phương trình có 2 nghiệm \(x_1,x_2\) là độ dài 2 cạnh của tam giác vuông có cạnh huyền là 5 thì \(x_1^2+x^2_2=5^2\)(Định lí Py-ta-go)
\(\Rightarrow m^2+4m+13=25\)
\(\Leftrightarrow m^2+4m-12=0\)
giải pt, ta được \(\left[{}\begin{matrix}m=2\\m=-6\end{matrix}\right.\)
Vậy với m=2 hoặc m=-6 thì pt có 2 nghiệm là độ dài 2 cạnh của tam giác vuông có cạnh huyền là 5.
em nhầm lẫn , là toán lớp 9 nhé