Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\text{Δ}=\left(4m+2\right)^2-4\left(4m+3\right)\)
\(=16m^2+16m+4-16m-12=16m^2-8\)
Để phương trình có hai nghiệm thì \(2m^2>=1\)
=>\(\left[{}\begin{matrix}m>=\dfrac{1}{\sqrt{2}}\\m< =-\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)
c: \(A=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)
\(=\left(4m+2\right)^3-3\cdot\left(4m+3\right)\left(4m+2\right)\)
\(=64m^3+96m^2+48m+8-3\left(16m^2+20m+6\right)\)
\(=64m^3+96m^2+48m+8-48m^2-60m-18\)
\(=64m^3+48m^2-12m-10\)
Bài 3:
a: Để pt có hai nghiệm trái dấu thì m+5<0
=>m<-5
b: \(\text{Δ}=\left(m+2\right)^2-4\left(m+5\right)\)
\(=m^2+4m+4-4m-20=m^2-16\)
Để phương trình có hai nghiệm phân biệt thì m^2-16>0
=>m>4 hoặc m<-4
c: x1^2+x2^2=23
=>(x1+x2)^2-2x1x2=23
=>(m+2)^2-2(m+5)=23
=>m^2+4m+4-2m-10-23=0
=>m^2+2m-29=0
hay \(m=-1\pm\sqrt{30}\)
d: Để pt có hai nghiệm âm phân biệt thì
\(\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\m+2< 0\\m+5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\-5< m< -2\end{matrix}\right.\Leftrightarrow m\in[-4;-2)\)
a: Để bất phương trình có vô số nghiệm thì \(\left\{{}\begin{matrix}\left(2m-2\right)^2-4m< =0\\1>0\end{matrix}\right.\Leftrightarrow4m^2-8m+4-4m< =0\)
=>\(m^2-3m+1< =0\)
=>\(\dfrac{3-\sqrt{5}}{2}< =m< =\dfrac{3+\sqrt{5}}{2}\)
b: Để f(x)=0 có hai nghiệm thì \(m^2-3m+1>=0\)
=>\(\left[{}\begin{matrix}m>=\dfrac{3+\sqrt{5}}{2}\\m< =\dfrac{3-\sqrt{5}}{2}\end{matrix}\right.\)
Theo đề, ta có: x1>1; x2>1
=>x1+x2>2
=>2(m-1)>2
=>m>2
△=[-2(1-m)]2-4(m2+3)
=4-8m+4m2-4m2-12
=-8-8m
De phuong trinh co 2 nghiem x1,x2 thì :△>=0
=>-8-8m≥0 =>m≤-1
Theo Viet {x1+x2=2-2m ;x1x2=m2+3
=> A=2(2-2m)-m2-3
=4-4m-m2-3
=-m2-4m+1 =-(m2+4m-1)
=-[(m+2)2-5] =-(m+2)2+5
Vì (m+2)2≥0∀m =>-(m+2)2≤0
=>-(m+2)2+5≤5
Vậy GTLN của A là 5 khi m=-2
\(\left\{{}\begin{matrix}m\ne0\\\Delta'>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m< 1\end{matrix}\right.\)
Khi đó \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+2}{m}\\x_1x_2=\dfrac{m+3}{m}\end{matrix}\right.\)
\(x_1^3+x_2^3-2\left(x_1+x_2\right)=0\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)-2\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2-2\right)=0\)
TH1: \(x_1+x_2=0\Leftrightarrow\dfrac{2\left(m+1\right)}{m}=0\Rightarrow m=-1\)
TH2: \(\left(x_1+x_2\right)^2-3x_1x_2-2=0\Leftrightarrow\left(\dfrac{2m+2}{m}\right)^2-\dfrac{3m+9}{m}-2=0\)
\(\Leftrightarrow m^2+m-4=0\Rightarrow\left[{}\begin{matrix}m=\dfrac{-1-\sqrt{17}}{2}\\m=\dfrac{-1+\sqrt{17}}{2}\left(l\right)\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m=-1\\m=\dfrac{-1-\sqrt{17}}{2}\end{matrix}\right.\)
Phương trình có hai nghiệm phân biệt
<=> \(\Delta'=\left(m+1\right)^2-\left(m+1\right)=\left(m+1\right)\left(m+1-1\right)=m\left(m+1\right)>0\)
<=> \(\orbr{\begin{cases}m>0\\m< -1\end{cases}}\)(@@)
Theo định lí vi et ta có: \(x_1x_2=m+1;x_2+x_2=-2\left(m+1\right)\)
Theo bài ra: \(\left(x_1-1\right)\left(x_2-1\right)< 0\)
<=> \(x_1x_2-\left(x_1+x_2\right)+1< 0\)
<=> 3 ( m + 1 ) + 1 < 0
<=> m < -4/3 thỏa mãn @@
Vậy...