Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=1+m^2-1=m^2>0\Rightarrow\) pt có 2 nghiệm pb khi \(m\ne0\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2+1\end{matrix}\right.\)
Do \(x_1\) là nghiệm của pt nên:
\(x_1^2-2x_1-m^2+1=0\Rightarrow x_1^3-2x_1^2-m^2x_1+x_1=0\)
\(\Rightarrow x_1^3-2x_1^2-m^2x_1=-x_1\)
Thế vào bài toán:
\(\left(2x_1-x_2\right)\left(-x_1+2x_2\right)=-3\)
\(\Leftrightarrow-2x_1^2-2x_2^2+5x_1x_2=-3\)
\(\Leftrightarrow-2\left(x_1+x_2\right)^2+9x_1x_2=-3\)
\(\Leftrightarrow-8+9\left(-m^2+1\right)=-3\)
\(\Leftrightarrow m^2=\dfrac{4}{9}\Rightarrow m=\pm\dfrac{2}{3}\)
Viết lại đề : \(x^2-2mx+m^2-1=0\left(a=1;b=-2m;c=m^2-1\right)\)( 1 )
a, Thay m = 1 vào pt (1) ta đc
\(x^2-2.1x+1^2-1=0\Leftrightarrow x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
Tương ứng vs : \(\left(2m\right)^2-4\left(m^2-1\right)=4m^2-4m^2+4=4>0\)(EZ>33)
c, Áp dụng hệ thức Vi et ta có : \(x_1+x_2=2m;x_1x_2=m^2-1\)
Theo bài ra ta có : \(x_1+x_2=12\)Thay vào ta đc
\(\Leftrightarrow2m=12\Leftrightarrow m=6\)
8.4/ Để phương trình có 2 nghiệm phân biệt thì \(\Delta'=\left(m+5\right)^2-\left(m^2+6\right)=10m+19>0\Leftrightarrow x>-\frac{19}{10}\)
Theo định lý viete, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+5\right)\\x_1x_2=m^2+6>0\forall x\in R\end{matrix}\right.\)
Ta có: \(\left|x_1\right|+\left|x_2\right|=16\Leftrightarrow x_1^2+x^2_2+2\left|x_1x_2\right|=256\Leftrightarrow\left(x_1+x_2\right)=256\)
\(\Leftrightarrow-2\left(m+5\right)=256\Leftrightarrow m+5=-128\Leftrightarrow m=-133\) (không t/m)
Vậy khôn tồn tại m thõa mãn ycbt
8.3/ Để phương trình có 2 nghiệm phân biệt thì \(\Delta'=\left(m-4\right)^2-\left(m^2+7\right)=-8m+9>0\) \(\Leftrightarrow m< \frac{9}{8}\)
Theo định lý \(viete:\left\{{}\begin{matrix}x_1+x_2=2\left(m+4\right)\\x_1x_2=m^2+7>0\forall x\in R\end{matrix}\right.\)
Ta có: \(\left|x_1\right|+\left|x_2\right|=12\Leftrightarrow x_1^2+x^2_2+2\left|x_1x_2\right|=144\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2=\left(x_1+x_2\right)=144\)
\(\Leftrightarrow2\left(m+4\right)=144\Leftrightarrow m+4=72\Leftrightarrow m=68\) (T/m)
KL: ...........
chủ yếu là hỏi câu c hả? tớ làm mỗi đoạn đưa về tổng - tích thôi, bạn giải thấy khó chỗ nào thì hỏi cụ thể nhe ^^
\(\left(x_1+2x_2\right)\left(x_2+2x_1\right)=x_1x_2+2x_2^2+2x_1^2+4x_1x_2=2\left(x_1+x_2\right)^2-4x_1x_2+5x_1x_2\)
đến đây Vi-ét đc òi
Gotcha Tokoyami
Có \(\Delta=\left(m-2\right)^2-4\left(-m^2+3m-4\right)\)
\(=m^2-4m+4+4m^2-12m+16\)
\(=5m^2-16m+20\)
\(=5\left(m^2-\frac{16}{5}m+4\right)\)
\(=5\left[\left(m^2-2.\frac{8}{5}m+\frac{64}{25}\right)+\frac{36}{25}\right]\)
\(=5\left[\left(m-\frac{8}{5}\right)^2+\frac{36}{25}\right]>0\forall m\)
Nên pt có 2 nghiệm phân biệt với mọi m
a, Với m = 0 thì pt trở thành
\(x^2+2x-4=0\)
Có \(\Delta'=1+4=5>0\)
\(\Rightarrow\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)
b, Theo hệ thức Vi-et \(x_1x_2=-m^2+3m-4=-\left(m-\frac{3}{2}\right)^2-\frac{7}{4}< 0\)
nên pt có 2 nghiệm trái dấu
c, Thiếu đề , nhưng làm hộ 1 bước biến đổi như bạn dưới
Để pt có hai nghiệm thì \(\Delta'\ge0\Rightarrow m^2-\left(m^2-m+1\right)\ge0\Rightarrow m-1\ge0\Rightarrow m\ge1.\)
Khi đó theo hệ thức Viet: \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m+1\end{cases}}\)
Vậy thì \(x_1^2+2mx_2=x_1^2+\left(x_1+x_2\right)x_2=9\)
\(\Rightarrow x_1^2+x_1.x_2+x_2^2=9\Rightarrow\left(x_1+x_2\right)^2-x_1x_2=9\)
\(\Rightarrow\left(2m\right)^2-m^2+m-1=9\Rightarrow3m^2+m-10=0\)
\(\Rightarrow\orbr{\begin{cases}m=-2\left(l\right)\\m=\frac{5}{3}\left(n\right)\end{cases}}\)
a) \(\Delta\)' = \(m^2-m^2+4=4>0\forall m\)
\(\Rightarrow\) pt có 2 nghiệm phân biệt \(\forall m\)
b) ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\2x_1-x_2=0\end{matrix}\right.\)\(\Leftrightarrow\) \(\left\{{}\begin{matrix}3x_1=2m\\x_1+x_2=2m\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_1=\dfrac{2m}{3}\\\dfrac{2m}{3}+x_2=2m\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_1=\dfrac{2m}{3}\\x_2=\dfrac{4m}{3}\end{matrix}\right.\)
ta có : \(x_1x_2=m^2-4\) \(\Leftrightarrow\) \(\dfrac{8m^2}{9}=m^2-4\)
\(\Leftrightarrow\) \(8m^2=9m^2-36\) \(\Leftrightarrow\) \(m^2=36\) \(\Leftrightarrow\) \(m=\pm6\)
vậy \(m=\pm6\) thỏa mảng đk bài toán
c) ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\3x_1+2x_2=7\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}2x_1+2x_2=4m\\3x_1+2x_2=7\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_1=7-4m\\7-4m+x_2=2m\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_1=7-4m\\x_2=6m-7\end{matrix}\right.\)
ta có : \(x_1x_2=m^2-4\) \(\Leftrightarrow\) \(\left(7-4m\right)\left(6m-7\right)=m^2-4\)
\(\Leftrightarrow\) \(42m-49-24m^2+28m=m^2-4\)
\(\Leftrightarrow\) \(25m^2-70m+45=0\)
\(\Leftrightarrow\) \(5m^2-14m+9=0\)
giải phương trình ta có : \(\left\{{}\begin{matrix}x=\dfrac{9}{5}\\x=1\end{matrix}\right.\)
vậy : \(x=\dfrac{9}{5};x=1\) thỏa mãng đk bài toán