Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=25-4\left(m-2\right)=33-4m>0\Rightarrow m< \frac{33}{4}\)
Theo Viet, pt có 2 nghiệm thỏa: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m-2\end{matrix}\right.\)
Để biểu thức đề bài có nghĩa \(\Rightarrow\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5>0\\m-2>0\end{matrix}\right.\) \(\Rightarrow2< m< \frac{33}{4}\)
Ta có:
\(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\Leftrightarrow2\left(\frac{\sqrt{x_1}+\sqrt{x_2}}{\sqrt{x_1x_2}}\right)=3\)
\(\Leftrightarrow2\left(\sqrt{x_1}+\sqrt{x_2}\right)=3\sqrt{x_1x_2}\)
\(\Leftrightarrow4\left(x_1+x_2+2\sqrt{x_1x_2}\right)=9x_1x_2\)
\(\Leftrightarrow4\left(5+2\sqrt{x_1x_2}\right)=9x_1x_2\)
Đặt \(\sqrt{x_1x_2}=a>0\) ta được:
\(4\left(5+2a\right)=9a^2\Rightarrow9a^2-8a-20=0\) \(\Rightarrow\left[{}\begin{matrix}a=2\\a=-\frac{10}{9}< 0\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x_1x_2}=2\Rightarrow x_1x_2=4\Rightarrow m-2=4\Rightarrow m=6\)
Tìm nghiệm nguyên dương của phương trình
(1+x1)(1+x2)...(1+xn) = 2n. căn(x1.x2...xn)
Các bạn giúp nhé!
a, Vì pt trên nhận \(4+\sqrt{2019}\) là nghiệm nên
\(\left(4+\sqrt{2019}\right)^2-\left(2m+2\right)\left(4+\sqrt{2019}\right)+m^2+2m=0\)
\(\Leftrightarrow2035+8\sqrt{2019}-2m\left(4+\sqrt{2019}\right)-8-2\sqrt{2019}+m^2+2m=0\)
\(\Leftrightarrow m^2-2m\left(3+\sqrt{2019}\right)+6\sqrt{2019}+2027=0\)
Có \(\Delta'=\left(3+\sqrt{2019}\right)^2-6\sqrt{2019}-2027=1>0\)
Nên pt có 2 nghiệm \(m=\frac{3+\sqrt{2019}-1}{1}=2+\sqrt{2019}\)
hoặc \(m=\frac{3+\sqrt{2019}+1}{1}=4+\sqrt{2019}\)
b, Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=2m+2\left(1\right)\\x_1x_2=m^2+2m\left(2\right)\end{cases}}\)
Theo đề \(x_1-x_2=m^2+2\left(3\right)\)
Lấy (1) + (3) theo từng vế được
\(2x_1=m^2+2m+5\)
\(\Rightarrow x_1=\frac{m^2+2m+5}{2}\)
\(\Rightarrow x_2=2m+2-x_1=...=-\frac{\left(m-1\right)^2}{2}\)
Thay vào (2) được \(\frac{m^2+2m+5}{2}.\frac{-\left(m-1\right)^2}{2}=m^2+2m\)
\(\Leftrightarrow-\left(m^2+2m+5\right)\left(m-1\right)^2=4m^2+8m\)
hmmm
\(\Delta=4\left(m+1\right)^2-4.2.\left(m^2+4m+3\right)\)= -4m2-24m-20 = (-4m-4)(m+5)
phương trình có 2 nghiệm => (-4m-4)(m+5) >0 <=> (4m+4)(m+5) <0 <=> -5 < m < -1
A = \(|\frac{c}{a}-2.\frac{-b}{a}|=\left|\frac{2b+c}{a}\right|\)
= |\(\frac{4\left(m+1\right)+m^2+4m+3}{4}\)| = |\(\frac{m^2}{4}+2m+\frac{7}{2}\)| = | (\(\frac{m}{2}+2\))2 -\(\frac{1}{2}\)|
(m+2)2-\(\frac{1}{2}\ge0< =>\orbr{\begin{cases}m\ge\sqrt{2}-4\\m\le-\sqrt{2}-4\end{cases}}\)kết hợp với -5<m<-1 ta được \(\sqrt{2}-4\le m< -1\)
=> (m+2)2-\(\frac{1}{2}< 0< =>-5< m< \sqrt{2}-4\)
xét m \(\in\)[\(\sqrt{2}-4;-1\)) => A \(=\left(m+2\right)^2-\frac{1}{2}\)\(\le\left(\sqrt{2}-4+2\right)^2-\frac{1}{2}=\frac{11}{2}-4\sqrt{2}\)(A max khi m= \(\sqrt{2}-4\))
xét m \(\in\left(-5;\sqrt{2}-4\right)\)=> A= \(\frac{1}{2}-\left(m+2\right)^2\le\frac{1}{2}\)( A max khi m = -2)
mà \(\frac{11}{2}-4\sqrt{2}< \frac{1}{2}\)=> A max =\(\frac{1}{2}\) khi m = -2
phương trình 2x2+2(m+1)x+m2+4m+3 là phương trình bậc hai nên ta có:
\(\Delta'=\left(m+1\right)^2-2\left(m^2+4m+3\right)\)
\(\Delta'=m^2+2m+1-2m^2-8m-6\)
\(\Delta'=-m^2-6m-5\)
vì PT có nghiệm x1 và x2 nên \(\Delta'\ge0\) \(hay\) \(-m^2-6m-5\ge0\Leftrightarrow m^2+6m+5\le0\)
\(\Leftrightarrow\left(m+1\right)\left(m+5\right)\le0\Leftrightarrow-5\le m\le-1\) \(\left(1\right)\)
Áp dụng định lí Vi - ét: \(\hept{\begin{cases}s=-m-1\\p=\frac{m^2+4m+3}{2}\end{cases}}\)
Ta có: A = |x1.x2 -2x1-2x2| = |p-2s|
<=> A = \(|\frac{m^2+4m+3}{2}-2\left(-m-1\right)|\)
<=> A= \(\left|\frac{m^2+4m+3+4m+4}{4}\right|\)
<=> A= \(\frac{1}{2}\left|m^2+8m+7\right|\)
<=> A= \(\frac{1}{2}\left|\left(m+1\right)\left(m+7\right)\right|\)
xét tích (m+1)(m+7) ta có:
Từ (1) \(-5\le m\le-1\Rightarrow\hept{\begin{cases}m+7\ge0\\m+1\le0\end{cases}}\)
=> \(\left(m+1\right)\left(m+7\right)\le0\)
Suy ra: |(m+1)(m+7)| = -(m+1)(m+7)
Khi đó: \(A=\frac{-1}{2}\left(m+1\right)\left(m+7\right)\)
\(A=\frac{-1}{2}\left(m^2+8m+7\right)=\frac{-1}{2}\left(m^2+8m+16-9\right)\)
\(A=\frac{-1}{2}\left[\left(m+4\right)^2-9\right]=\frac{9}{2}-\frac{\left(m+4\right)^2}{2}\le\frac{9}{2}\)
Dấu " = " xảy ra khi và chỉ khi m+4 =0 <=>m=-4 (thỏa mãn điều kiện (1) )
Vậy \(maxA=\frac{9}{2}\Leftrightarrow m=-4\)
\(x^2-\sqrt{3}x-\sqrt{5}=0\)
Tính dental dc chứ - tự lm nha
\(\sqrt{2x_1}+\sqrt{2x_1}\)
\(\Leftrightarrow2x_1+2x_2+2\sqrt{4x_1x_2}\)
Tự lm lun nhoa đến 90 % rồi