Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)
Ta có:
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=12^2-2.4=136\)
\(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=12+2\sqrt{4}=16\Rightarrow\sqrt{x_1}+\sqrt{x_2}=4\)
\(\Rightarrow T=\dfrac{136}{4}=34\)
pt đã cho có \(\Delta'=\left(-6\right)^2-1.4=32>0\)
\(\Rightarrow\)pt đã cho có 2 nghiệm phân biệt
Áp dụng hệ thức Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=12\\x_1x_2=4\end{cases}}\)
Ta có \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=12^2-2.4=136\)
Mặt khác \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=12+2\sqrt{4}=16\)\(\Rightarrow\sqrt{x_1}+\sqrt{x_2}=4\)
\(\Rightarrow T=\frac{136}{4}=34\)
\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)
\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm
\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)
a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)
\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)
với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề
\(\Delta=b^2-4ac=m^2+16\)
=> Pt luôn có 2 nghiệm phân biệt
Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1\cdot x_2=\frac{c}{a}=-4\end{cases}}\)
Thay vào A ta được : \(A=\frac{2m+7}{m^2+8}\)
=> Min A = -1/8 khi m=-8
Xét \(x^2-\left(2m+1\right)x-3=0\left(1\right)\)
PT (1) có a.c=\(1\cdot\left(-3\right)=-3< 0\)
=> PT (1) luôn có 2 nghiệm phân biệt trái dấu với mọi m
Mà \(x_1< x_2\left(gt\right)\)nên x1<0 và x2>0 => \(\hept{\begin{cases}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{cases}}\)
Áp dụng hệ thức Vi-et ta có \(x_1+x_2=2m+1\)
Theo bài ra \(\left|x_1\right|-\left|x_2\right|=5\Rightarrow-x_1-x_2=5\Leftrightarrow x_1+x_2=-5\Leftrightarrow2m+1=-5\Leftrightarrow m=-3\)
Ta có: \(x^2-5x+3=0\)
Áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=3\end{cases}}\)
a) \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=5^2-2.3=19\)
b) \(B=x_1^3+x_2^3=\left(x_1+x_2\right)^3-3\left(x_1+x_2\right)x_1x_2=5^3-3.5.3=80\)
c) \(C=\left|x_1-x_2\right|\)>0
=> \(C^2=x_1^2+x_2^2-2x_1x_2=19-2.3=13\)
=> C = căn 13
d) \(D=x_2+\frac{1}{x_1}+x_1+\frac{1}{x_2}=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}=5+\frac{5}{3}=5\frac{5}{3}\)
e) \(E=\frac{1}{x_1+3}+\frac{1}{x_2+3}=\frac{\left(x_1+x_2\right)+6}{x_1x_2+3\left(x_1+x_2\right)+9}=\frac{5+6}{3+3.5+9}=\frac{11}{27}\)
g) \(G=\frac{x_1-3}{x_1^2}+\frac{x_2-3}{x_2^2}=\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-3\left(\frac{1}{x_1^2}+\frac{1}{x_2^2}\right)\)
\(=\frac{x_1+x_2}{x_1x_2}-3\frac{x_1^2+x_2^2}{x_1^2.x_2^2}=\frac{5}{3}-3.\frac{19}{3^2}=-\frac{14}{3}\)
a) Áp dụng đl Vi-ét vào pt ta có:
x1+x2=-1.5
x1 . x2= -13
C=x1(x2+1)+x2(x1+1)
= 2x1x2 + x1+x2
= 2.(-13) -1.5
= -26 -1.5
= -27.5
a, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-\frac{3}{2}\\x_1x_2=\frac{c}{a}=-13\end{cases}}\)
Ta có : \(C=x_1\left(x_2+1\right)+x_2\left(x_1+1\right)=x_1x_2+x_1+x_1x_2+x_2\)
\(=-13-\frac{3}{2}-13=-26-\frac{3}{2}=-\frac{55}{2}\)
Giả sử pt: \(x^2+bx+c=0\) có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn đề bài.
Theo hệ thức Vi - ét ta có: \(x_1+x_2=-b\) và \(x_1x_2=c\)
Kết hợp với giải thiết ta có: \(x_1=x^2_2+x_2\) và \(b+c=4\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)=4\)
\(\Leftrightarrow x^3_2-2x_2-4=0\)
\(\Leftrightarrow\left(x_2-2\right)\left(x^2_2+2x_2+2\right)=0\)
\(\Leftrightarrow x_2=2\)(Vì: \(x^2_2+2x_2+2=\left(x_2+1\right)^2+1>0\))
Khi đó ta có: \(x_1=4+2=6\Rightarrow b=-8\)và \(c=12\)
Thử lại với \(b=-8;c=12\)ta được pt sau:
\(x^2-8x+12=0\)
\(\Leftrightarrow x_1=6;x_2=2\)(Thỏa mãn yêu cầu bài toán)
Vậy \(\left(b,c\right)=\left(-8;12\right)\) là cặp cần tìm.