Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\Delta\)'= \(\left(-m\right)^2-2m+2=\left(m-1\right)^2+1>0\veebar m\)
Vậy với mọi giá trị của m thì phương trình đã cho luôn có 2 nghiệm phân biệt
Theo hệ thức Vi-ét ta có \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=2m\\x_1.x_2=\dfrac{c}{a}=2m-2\end{matrix}\right.\)
Thay giá trị của \(x_1+x_2\) và \(x_1.x_2\) vào biểu thức A ta được :
\(A=\dfrac{6.\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-2x_1x_2+4\left(x_1+x_2\right)}=\dfrac{12m}{4m^2+4m+4}\)
\(A=\dfrac{3m}{m^2+m+1}\)
Cm: \(3m\le m^2+m+1\)
\(\Leftrightarrow\left(m-1\right)^2\ge0\) (luôn đúng ) (dấu = xảy ra khi x=1)
Do đó \(3m\le m^2+m+1\) khi đó ta được:
\(A=\dfrac{3m}{m+m+1}\le1\)
Vậy với GTLN của A = 1 khi và chỉ khi m=1
\(\Delta'=\left(a-1\right)^2-\left(a^2+a-2\right)=-3a+3\)
Để phương trình có hai nghiệm \(x_1;x_2\) thì \(\Delta'\ge0\Leftrightarrow-3a+3\ge0\Leftrightarrow a\le1\)
Áp dụng hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=2\left(a-1\right)\\x_1.x_2=a^2+a-2\end{cases}}\)
Vậy thì \(P=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=4\left(a-1\right)^2-2\left(a^2+a-2\right)\)
\(=2a^2-10a+8=2\left(a^2-5a+\frac{25}{4}\right)-\frac{9}{2}=2\left(a-\frac{5}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Vậy \(\text{min}P=-\frac{9}{2}\Leftrightarrow a=\frac{5}{2}.\)
Bài giải :
Δ'=(a−1)2−(a2+a−2)=−3a+3
Để phương trình có hai nghiệm x1;x2 thì Δ'≥0⇔−3a+3≥0⇔a≤1
Áp dụng hệ thức Viet ta có: {
x1+x2=2(a−1) |
x1.x2=a2+a−2 |
Vậy thì P=x12+x22=(x1+x2)2−2x1.x2=4(a−1)2−2(a2+a−2)
=2a2−10a+8=2(a2−5a+254 )−92 =2(a−52 )2−92
Với a≤1⇒P≥0
Vậy minP = 0 khi a = 1.
a; \(\Delta\)' = \([\) -(m+1)\(]\) 2-1.(m2+m-1)
\(\Leftrightarrow\) m2 + 2m +1- m2- m + 1 \(\Leftrightarrow\) m + 2
phương trình có 2 nghiệm \(\Leftrightarrow\Delta\) > 0
\(\Leftrightarrow\) m + 2 > 0 \(\Leftrightarrow\) m > -2
vậy m > -2 thì phương trình có 2 nghiệm
b; x1 + x2 = \(\dfrac{-b}{a}\) = 2.(m + 1) = 2m + 2 (1)
x1 . x2 = \(\dfrac{c}{a}\) = m2 + m - 1 (2)
x12 + x22 = (x1 + x2)2 - 2x1.x2 (3)
thay (1) ; (2) vào (3)
\(\Leftrightarrow\) (2m + 2)2 - 2.(m2 + m - 1)
= 4m2+ 8m + 4 - 2m2- 2m + 2 = 2m2 + 6m + 6
\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)
\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm
\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)
a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)
\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)
với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề
a)
b) coi (a) đúng
\(A=\dfrac{2\left(x_1+x_2\right)+7}{x_1^2+x_2^2}=\dfrac{2\left(x_1+x_2\right)+7}{\left(x_1+x_2\right)^2-2x_1x_2}=\dfrac{2m+7}{\left(2m\right)^2+8}\)
2m =t
\(A=\dfrac{t+7}{t^2+8}\) ;A nhỏ nhất chỉ xét A<0
At^2 -t +8A -7 =0
\(\Delta_x=1-4A\left(8A-7\right)=1+28A-32A^2\)
\(\Delta_a=\left(2.7\right)^2+4.8=4\left(49+8\right)=4.57\)
\(\Delta_x\ge0\Leftrightarrow\dfrac{14-2\sqrt{57}}{32}\le A\le\dfrac{14+2\sqrt{57}}{32}\)
GTNN A =\(\dfrac{7-\sqrt{57}}{16}\)
Theo vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2017^{2018}\\x_1.x_2=1\end{cases}}\)
Ta lại có:
\(y_1+y_2=x_1^2+1+x_2^2+1=\left(x_1+x_2\right)^2-2x_1.x_2+2=2017^{4036}\)
\(y_1.y_2=\left(x_1^2+1\right)\left(x_2^2+1\right)=x_1^2+x_2^2+1+x_1^2.x_2^2=\left(x_1+x_1\right)^2+\left(x_1.x_2\right)^2-2x_1.x_2+1=2017^{4036}\)
Vậy phương trình mới là:
\(Y^2-2017^{4036}Y+2017^{4036}=0\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=1\end{matrix}\right.\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=3^2-2.1=7\)
\(x^2-3x+1=0\)
\(\Delta=\left(-3\right)^2-4=5>0\)
Áp dung hệ thức Viet:
\(x_1+x_2=3\)
\(x_1\cdot x_2=1\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=3^2-2\cdot1=7\)