K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2020

srtgb6yyyyyyyy

24 tháng 5 2020

\(2018x^2-\left(m-2019\right)x-2020=0\)

Ta có \(\Delta=b^2-4ac\)

             \(=\left[-\left(m-2019\right)\right]^2-4.2018.\left(-2020\right)\)

             \(=\left(m-2019\right)^2+4.2018.2020>0\)( vì \(\left(m-2019\right)^2\ge0\forall x\))

Phương trình có 2 nghiệm \(x_1,x_2\) Áp dụng hệ thức Vi-ét ta có

\(\hept{\begin{cases}x_1+x_2=\frac{m-2019}{2018}\left(1\right)\\x_1.x_2=\frac{-2020}{2018}\left(2\right)\end{cases}}\)

Ta có \(\sqrt{x_1^2+2019}-x_2=\sqrt{x_2^2+2019}-x_2\)

\(\Leftrightarrow\sqrt{x_1^2+2019}-x_2+x_2=\sqrt{x_2^2+2019}\)

\(\Leftrightarrow\sqrt{x_1^2+2019}+0=\sqrt{x_2^2+2019}\)

\(\Leftrightarrow x_1^2+2019=x_2^2+2019\)

\(\Leftrightarrow x_1^2-x_2^2=0\)

\(\Leftrightarrow\left(x_1-x_2\right).\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right).\frac{m-2019}{2018}=0\Rightarrow x_1-x_2=0\left(3\right)\)

Thay (3) vào (!) ta có \(\hept{\begin{cases}x_1+x_2=\frac{m-2019}{2018}\\x_1-x_2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x_1=\frac{m-2019}{2018}\\x_1-x_2=0\end{cases}}\)

                                                                                      \(\Leftrightarrow\hept{\begin{cases}x_1=\frac{m-2019}{4036}\\x_2=\frac{m-2019}{4036}\end{cases}}\)

\(\Rightarrow x_1.x_2=\frac{-2020}{2018}=\frac{-1010}{1009}\)

\(\Leftrightarrow\frac{m-2019}{4036}.\frac{m-2019}{4036}=\frac{-1010}{1009}\)

\(\Leftrightarrow\frac{\left(m-2019\right)^2}{4036^2}=\frac{-1010}{1009}\)

\(\Leftrightarrow\left(m-2019\right)^2=\frac{4036^2.\left(-1010\right)}{1009}\)

\(\Leftrightarrow\left(m-2019\right)^2=-16305440\left(VL\right)\)

Vậy không có m để thỏa mãn bài toán 

4 tháng 4 2019

\(\Delta'=\left(m-1\right)^2-m^2+m-1=m^2-2m+1-m^2+m-1=-m.\)

Để phương trình có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow-m\ge0\Leftrightarrow m\le0\)

Theo vi ét:

\(\hept{\begin{cases}x_1+x_2=-2\left(m-1\right)\\x_1.x_2=m^2-m+1=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\)

\(\left|x_1\right|+\left|x_2\right|=4\Leftrightarrow x_1+x_2+2\left|x_1.x_2\right|=16\)

\(\Leftrightarrow1-2m+2\left|m^2-m+1\right|=16\)

\(\Leftrightarrow1-2m+2m^2-2m+2=16\)(Vì \(m^2-m+1>0\Rightarrow\left|m^2-m+1\right|=m^2-m+1\))

\(\Leftrightarrow2m^2-4m-13=0\)

Đến đây bạn tự giải \(\Delta\)tìm m đối chiếu điều kiện là ok.

Ta có : \(x^2-5x+m=0\left(a=1;b=-5;c=m\right)\)

Theo hệ thức Vi et ta có : \(x_1+x_2=5;x_1x_2=m\)

Theo bài ra ta có : \(x_1^2+x_2^2+7=2\sqrt{x_2^2-3}+6x_1\)

Thay \(x_1;x_2\)lần lượt là \(x;y\)thì ta có phương trình mới :

\(x^2+y^2+7=2\sqrt{y^2-3}+6x\)

\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y^2-3}+6x\)

\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y^2-\sqrt{3}^2}+6x\)

\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y-\sqrt{3}}^2+6x\)

\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2y-2\sqrt{3}+6x\)

\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\left(y-\sqrt{3}+3x\right)\)

\(\Leftrightarrow\frac{\left(x+y\right)^2-2xy+7}{2}=y-\sqrt{3}+3x\)

Mời idol về giải chứ chưa đi sâu vào mấy cái căn này lắm, phá mãi mới ra mà chả biết nhóm vào đâu. 

NV
18 tháng 5 2020

Do \(x_1x_2=-\frac{2019}{2017}< 0\Rightarrow\) pt có 2 nghiệm trái dấu.

\(\sqrt{x_1^2+2018}-x_2=\sqrt{x_2^2+2018}+x_1\)

\(\Rightarrow x_1^2+x_2^2+2018-2x_2\sqrt{x^2_1+2018}=x_1^2+x_2^2+2018+2x_1\sqrt{x_2^2+2018}\)

\(\Leftrightarrow-x_2\sqrt{x_1^2+2018}=x_1\sqrt{x_2^2+2018}\)

\(\Rightarrow x_2^2\left(x_1^2+2018\right)=x_1^2\left(x_2^2+2018\right)\)

\(\Rightarrow x_1^2=x_2^2\Rightarrow x_1=-x_2\) (do \(x_1;x_2\) trái dấu)

\(\Rightarrow x_1+x_2=0\Rightarrow\frac{m-2018}{2017}=0\Rightarrow m=2018\)