Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Thay m=-1 vào phương trình ta đc:
\(4.\left(-1\right)^2.x-4x-3.\left(-1\right)=3\)
\(\Leftrightarrow4x-4x+3=3\)
\(\Leftrightarrow0x=0\)(Luôn đúng)
\(\Leftrightarrow\)Pt có vô số nghiệm
Vậy pt có vô số nghiệm.
b)Thay x=2 vào phương trình ta có:
\(4m^2.2-4.2-3m=3\)
\(\Leftrightarrow8m^2-8-3m=3\)
\(\Leftrightarrow8m^2-3m-11=0\)
\(\Leftrightarrow8m^2+8m-11m-11=0\)
\(\Leftrightarrow8m\left(m+1\right)-11\left(m+1\right)=0\)
\(\Leftrightarrow\left(m+1\right)\left(8m-11\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m+1=0\\8m-11=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=-1\\m=\frac{11}{8}\end{cases}}\)
Vậy tập nghiệm của pt là S={-1;\(\frac{11}{8}\)}
c)Ta có:
\(5x-\left(3x-2\right)=6\)
\(\Leftrightarrow5x-3x+2=6\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
Có x=2 là nghiệm của pt \(5x-\left(3x-2\right)=6\)
Để \(4m^2x-4x-3m=3\Leftrightarrow5x-\left(3x-2\right)=6\)
\(\Leftrightarrow\)x=2 là nghiệm của \(4m^2x-4x-3m=3\)
Thay x=2 vào pt trên ta đc:
\(4m^2.2-4.2-3m=3\)(Giống câu b)
Vậy m=-1,m=11/8...
d)Có:\(4m^2x-4x-3m=3\)
\(\Leftrightarrow4x\left(m^2-1\right)=3+3m\)
Để pt vô nghiệm
\(\Leftrightarrow\hept{\begin{cases}m^2-1=0\\3+3m\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=\pm1\\m\ne-1\end{cases}}\)
\(\Leftrightarrow m=1\)
Vậy m=1 thì pt vô nghiệm.
a) Thay m=-4 vào phương trình mx-2x+3=0, ta được
\(-4x-2x+3=0\)
\(\Leftrightarrow-6x+3=0\)
\(\Leftrightarrow3-6x=0\)
\(\Leftrightarrow6x=3\)
hay \(x=\frac{1}{2}\)
Vậy: Khi m=-4 thì \(x=\frac{1}{2}\)
b) Thay x=2 vào phương trình mx-2x+3=0, ta được
\(m\cdot2-2\cdot2+3=0\)
\(\Leftrightarrow2m-1=0\)
hay 2m=1
⇔\(m=\frac{1}{2}\)
Vậy: Khi \(m=\frac{1}{2}\) thì phương trình có nghiệm là x=2
\(3-m=\frac{10}{x+2}\)
\(\Leftrightarrow\left(3-m\right)\left(x+2\right)=10\)
=> 3-m và x+2 thuộc Ư (10)={1;2;5;10}
TH1: \(\hept{\begin{cases}3-m=1\\x+2=10\end{cases}\Leftrightarrow\hept{\begin{cases}m=2\\x=8\end{cases}}}\)hoặc \(\hept{\begin{cases}3-m=10\\x+2=1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-7\\x=1\end{cases}}}\)
TH2: \(\hept{\begin{cases}3-m=5\\x+2=2\end{cases}\Leftrightarrow\hept{\begin{cases}m=-2\\x=0\end{cases}}}\)hoặc \(\hept{\begin{cases}3-m=2\\x+2=5\end{cases}\Leftrightarrow\hept{\begin{cases}m=1\\x=-3\end{cases}}}\)(loại)
bài 3:
\(A=\frac{2x^3-6x^2+x-8}{x-3}\left(x\ne3\right)\)
\(\Leftrightarrow A=\frac{\left(2x^3-6x^2\right)+\left(x-8\right)}{x-3}=\frac{2x\left(x-3\right)+\left(x-8\right)}{x-3}=2x+\frac{x-8}{x-3}\)
Để A nguyên thì \(\frac{x-8}{x-3}\)nguyên
Có: \(\frac{x-8}{x-3}=\frac{x-3-5}{x-3}=1-\frac{5}{x-3}\)
Vì x nguyên => x-3 nguyên => x-3 \(\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Ta có bảng
x-3 | -5 | -1 | 1 | 5 |
x | -2 | 2 | 4 | 8 |
a) \(2x^2-4x+m=0\)
\(2\left(x^2-2x\right)=-m\)
\(x^2-2x+1=-\frac{m}{2}+1\)
\(\left(x-1\right)^2=-\left(\frac{m}{2}-1\right)\)
\(\Leftrightarrow\hept{\begin{cases}x-1=\sqrt{-\left(\frac{m}{2}-1\right)}\\x-1=-\sqrt{-\left(\frac{m}{2}-1\right)}\end{cases}}\)
để căn có nghĩa thì \(-\left(\frac{m}{2}-1\right)\ge0\Leftrightarrow=\frac{m}{2}-1\le0\Leftrightarrow m\le2\)
vậy pt luôn có 2 nghiệm phân biệt với điều kiện m <= 2
b)
\(mx^2-4x-5=0\)
\(x^2-\frac{4}{m}x-\frac{5}{m}=0\)
\(\left(x^2-2x.\frac{2}{m}+\frac{4}{m^2}\right)=\frac{4}{m^2}+\frac{5}{m}\)
\(\left(x-\frac{2}{m}\right)^2=\frac{4+5m}{m^2}\)
\(\Leftrightarrow\hept{\begin{cases}x-\frac{2}{m}=\sqrt{\frac{4+5m}{m^2}}\\x-\frac{2}{m}=-\sqrt{\frac{4+5m}{m^2}}\end{cases}}\)
để căn có nghĩa thì
\(\sqrt{\frac{4+5m}{m^2}}\ge0\Leftrightarrow4+5m\ge0\Leftrightarrow m\ge-\frac{4}{5}\)
vậy pt có 2 nghiệm với dk m .= -4/5