\(x-\sqrt{6x}-3+2m=0\left(1\right)\)

tìm m để pt có 2 nghi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

Cô hướng dẫn thôi nhé ^^

Coi phương trình trên là phương trình bậc hai với ẩn \(\sqrt{x}\)

Để phương trình trên có 2 nghiệm \(x_1;x_2\) thì nó phải có 2 nghiệm phân biệt cùng dương \(\sqrt{x _1};\sqrt{x_2}\).

Điều này tương đương \(\Delta>0,S>0,P>0\) hay \(\frac{9}{4}>m>\frac{3}{2}\)

Khi đó theo Viet ta có: \(\sqrt{x_1}+\sqrt{x_2}=\sqrt{6}\)\(\sqrt{x_1x_2}=2m-3\)

Vậy điều kiện trên tương đương: \(\frac{\left(\sqrt{x_1}+\sqrt{x_2}\right)^2-2\sqrt{x_1x_2}}{\sqrt{x_1}+\sqrt{x_2}}=\frac{\sqrt{24}}{3}\)

Thế vào ta có: \(\frac{6-2\left(2m-3\right)}{\sqrt{6}}=\frac{\sqrt{24}}{3}\Rightarrow12-4m=4\Rightarrow m=2\)

Chúc em học tốt ^^

23 tháng 3 2020

Đặt \(t=\sqrt{x}\left(t\ge0\right)\Rightarrow t^2-\sqrt{6}t-3+2m=0\left(1\right)\)

Giả sử phương trình $(1)$ có nghiệm $t_1;t_2$ thì \(t_1+t_2=\sqrt{6}\)\(t_1.t_2=2m-3\)

\(t_1=\sqrt{x_1}\left(t_1\ge0\right)\Rightarrow x_1=t_1^2\)\(t_2=\sqrt{x_2}\left(t_2\ge0\right)\Rightarrow x_2=t_2^2\)

Ta có: \(\dfrac{{{x_1} + {x_2}}}{{\sqrt {{x_1}} + \sqrt {{x_2}} }} = \dfrac{{\sqrt {24} }}{3}\)

\(\Leftrightarrow \dfrac{{t_1^2 + t_2^2}}{{{t_1} + {t_2}}} = \dfrac{{\sqrt {24} }}{3}\\ \Leftrightarrow \dfrac{{{{\left( {{t_1} + {t_2}} \right)}^2} - 2{t_1}{t_2}}}{{{t_1} + {t_2}}} = \dfrac{{\sqrt {24} }}{3}\\ \Leftrightarrow \dfrac{{6 + 6 - 4m}}{{\sqrt 6 }} = \dfrac{{\sqrt {24} }}{3} \Leftrightarrow m = 2\left( {tm} \right)\)

23 tháng 3 2020

thank you very much!!

10 tháng 4 2020
https://i.imgur.com/Um6SNKp.jpg
5 tháng 4 2021

Ta có:

\(x^2-2\left(m+5\right)x+2m+9=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2m-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2m+9\end{cases}}\)

Thế vô làm nốt

4 tháng 4 2016

dùng viet để giải

4 tháng 4 2016

dùng đen ta phẩy để giải pt. 

kết quả khi m >  \(\frac{5}{6}\)thì pt có nghiệm

theo vi-ét ta có: x1 + x2 = \(\frac{-b}{a}=\frac{2\left(m-2\right)}{1}=2\left(m-2\right)\)(1)

                                x1 . x2 = \(\frac{c}{a}=\frac{m^2+2m-3}{1}=m^2+2m-3\)(2)

theo đầu bài ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)

                       <=> \(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)(3)

thay (1) và (2) vào (3) r tính m. kết quả khi m=2 thì pt có nghiệm thỏ mãn đk đó.

14 tháng 4 2018

có 2 nghiệm phân biệt chi và chỉ khi \(\Delta^,=\left(m-2\right)^2-m^2-2m+3>0\)

                                                                 \(\Leftrightarrow m^2-4m+4-m^2-2m+3>0\)

                                                                     \(\Leftrightarrow-6m+7>0\Leftrightarrow m< \frac{7}{6}\)