Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình gợi ý
muốn cho\(\frac{n+1}{n-3}\)là phân số tối giản thì (n+1,n-3)=1.Ta biết rằng nếu (a,b)=1 thì (a.a-b)=1 \(\Rightarrow\)(n-3,4)=1\(\Rightarrow\)n-3 ko chia hết cho2 hay n là số chẵn
A = n+1/n-3 = n-3+4/n-3 = n-3/n-3 + 4/n-3 = 1 + 4/n-3
Để A tối giản <=> ƯCLN ( n +1;n-3) = 1 <=> ƯCLN ( 4;n-3) = 1
<=> n-3 không chia hết cho 4
<=> n - 3 thuộc 4k
<=> n thuộc 4k - 3
Bài này chỉ ra kết quả tổng quát của n được thôi,không ra kết quả được đâu
Bài này khá đơn giản
===============
Để A nguyên thì 5 chia hết cho n+1 => n+1\(\inƯ_{\left(5\right)}\)
Ta có bảng
n+1 | 5 | 1 | -1 | -5 |
n | 4 | 0 | -2 | -6 |
Vậy n\(\in\)(4,0,-2,-6) là các giá trị cần tìm
Các phân số trên có dạng \(\frac{a}{n+2+a}\) với a = 6; 7; 8; ...; 65
\(\frac{a}{n+2+a}\)tối giản \(\Leftrightarrow\)ƯCLN(a; n+2+a) = 1 \(\Leftrightarrow\) ƯCLN(n+2; a) = 1
\(\Leftrightarrow\)n + 2 nguyên tố cùng nhau với mỗi số 6; 7; 8; ...; 65 và n + 2 nhỏ nhất
Do đó n + 2 = 67 (67 là số nguyên tố)
nên n = 65
\(y=\frac{1}{x^2+\sqrt{x}}\)