Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d là ƯC(3n - 2; 4n - 3)
\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}}\)
\(\Rightarrow12n-8-12n+9⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
=> ...
a) với a là số nguyên thì phân số a/74 tối giản khi n không thuộc ước và bội của 74
b) với b là số nguyên thì phân số b/225 tối giản khi b không thuộc ước và bội của 225
c) 3n/3n + 1 với 3n và 3n + 1 là hai số tự nhiên liên tiếp nên không chia được bất kì số nào khác 1
a) với a là số nguyên thì phân số a/74 tối giản khi n không thuộc ước và bội của 74
b) với b là số nguyên thì phân số b/225 tối giản khi b không thuộc ước và bội của 225
c) 3n/3n + 1 với 3n và 3n + 1 là hai số tự nhiên liên tiếp nên không chia được bất kì số nào khác 1
Do \(\frac{a}{b}\) là một phân số chưa tối giản nên ta có thể đặt \(\hept{\begin{cases}a=md\\b=nd\end{cases}}\left[d=\left(a;b\right);\left(m;n\right)=1\right]\)
Khi đó ta có:
a) \(\frac{a}{a-b}=\frac{md}{md-nd}=\frac{md}{\left(m-n\right)d}\) chưa là phân số tối giản (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)
b) \(\frac{2a}{a-2b}=\frac{2md}{md-2nd}=\frac{2md}{\left(m-2n\right)d}\) chưa là phân số tối giản (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)
Đặt \(d=\left(n+1,3n+2\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(2n+1,4n+3\right)\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.